BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6640207)

  • 1. Interactions between alinidine and responses to acetylcholine, dopamine and 5-hydroxytryptamine of specific Helix central neurones.
    Bokisch AJ; Walker RJ
    Br J Pharmacol; 1983 Nov; 80(3):567-71. PubMed ID: 6640207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat.
    Bevan P; Bradshaw CM; Szabadi E
    Br J Pharmacol; 1975 Jul; 54(3):285-93. PubMed ID: 1164588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antagonism of acetylcholine excitatory and inhibitory responses of Helix central neurones, by some neuromuscular blocking drugs.
    Bokisch AJ; Hussain J; Palmer RA; Walker RJ
    Eur J Pharmacol; 1985 Jun; 112(3):405-9. PubMed ID: 4018142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The possible site of action of 5-hydroxytryptamine, 6-hydroxytryptamine, tryptamine and dopamine on identified neurons in the central nervous system of the snail, Helix aspersa.
    Wright NJ; Walker RJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):217-25. PubMed ID: 6146474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail, Helix aspersa.
    Bokisch AJ; Walker RJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 84(2):231-41. PubMed ID: 2874941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-induced inhibition and excitation of neurones of the snail Helix aspersa.
    Boudier HA; Van Rossum JM
    Arch Int Pharmacodyn Ther; 1974 Jun; 209(2):314-24. PubMed ID: 4441170
    [No Abstract]   [Full Text] [Related]  

  • 7. Blocking effects of alinidine on negative chronotropic and inotropic responses to vagal stimulation and injected acetylcholine and carbachol in dogs.
    Ogiwara Y; Furukawa Y; Takeda M; Chiba S
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1113-20. PubMed ID: 3694527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of Avermectin (MK 936) on identified central neurones from Helix and its interaction with acetylcholine and gamma-aminobutyric acid (GABA) responses.
    Bokisch AJ; Walker RJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 84(1):119-25. PubMed ID: 2873943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative chronotropic and parasympatholytic effects of alinidine on canine sinus node and AV junction.
    Hageman GR; Neely BH; Urthaler F; James TN
    Am J Physiol; 1985 Mar; 248(3 Pt 2):H324-30. PubMed ID: 3976903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa.
    Kerkut GA; Lambert JD; Gayton RJ; Loker JE; Walker RJ
    Comp Biochem Physiol A Comp Physiol; 1975 Jan; 50(1A):1-25. PubMed ID: 234036
    [No Abstract]   [Full Text] [Related]  

  • 11. The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines.
    Coote JH; Macleod VH; Fleetwood-Walker S; Gilbey MP
    Brain Res; 1981 Jun; 215(1-2):135-45. PubMed ID: 7260583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of drugs on identified neurones in the suboesophageal ganglia of Helix aspersa.
    Lambert JD
    J Physiol; 1973 Jul; 232(2):64P-65P. PubMed ID: 4727096
    [No Abstract]   [Full Text] [Related]  

  • 13. An analysis of the 5-hydroxytryptamine (serotonin) receptor subtypes of central neurones of Helix aspersa.
    Vehovszky A; Walker RJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(3):463-76. PubMed ID: 1687543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microelectrophoretically applied acetylcholine, noradrenaline, dopamine and serotonin on the discharge of paraventricular oxytocinergic neurones in the rat.
    Honda K; Negoro H; Fukuoka T; Higuchi T; Uchide K
    Endocrinol Jpn; 1985 Feb; 32(1):127-33. PubMed ID: 2862023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of the significance of irregular spike activity in response to mediator action on Helix pomatia neurons].
    Vagin IuE; Shurygina AP; Batsiuro SG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(2):322-9. PubMed ID: 2862751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological effects of alinidine (ST 567) on sinoatrial node fibres in the rabbit heart.
    Opthof T; Duivenvoorden JJ; Vanginneken AC; Jongsma HJ; Bouman LN
    Cardiovasc Res; 1986 Oct; 20(10):727-39. PubMed ID: 3791339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of dopamine and serotonin in modulating the defensive behavior of the edible snail].
    Chistiakova MV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(5):941-8. PubMed ID: 2603562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrophysiological and pharmacological study of some neurones in the subesophageal ganglion complex of the snail, Helix pomatia (L.).
    Leeuwin RS; van Wilgenburg H
    Arch Int Pharmacodyn Ther; 1974 Jan; 207(1):114-21. PubMed ID: 4824886
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulatory effect of serotonin on the acetylcholine sensitivity of identified neurons in the brain of Helix pomatia L.
    Yurchenko OP; S-Rózsa K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(1):127-33. PubMed ID: 6141865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neurone.
    Berry MS; Cottrell GA
    J Physiol; 1975 Jan; 244(3):589-612. PubMed ID: 1133772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.