BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6640343)

  • 1. Regeneration of locomotor command systems in the sea lamprey.
    Currie SN; Ayers J
    Brain Res; 1983 Nov; 279(1-2):238-40. PubMed ID: 6640343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS.
    McClellan AD
    Brain Res; 1988 May; 448(2):339-45. PubMed ID: 3378155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of 'fictive swimming' by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system.
    McClellan AD; Grillner S
    Brain Res; 1984 May; 300(2):357-61. PubMed ID: 6733478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons.
    McClellan AD
    Neuroscience; 1990; 37(3):781-98. PubMed ID: 2247224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem command systems for locomotion in the lamprey: localization of descending pathways in the spinal cord.
    McClellan AD
    Brain Res; 1988 Aug; 457(2):338-49. PubMed ID: 3219560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor recovery in spinal-transected lamprey: regenerated spinal coordinating neurons and mechanosensory inputs couple locomotor activity across a spinal lesion.
    McClellan AD
    Neuroscience; 1990; 35(3):675-85. PubMed ID: 2199845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of fin command system function following spinal transection in larval sea lamprey.
    Currie SN; Ayers J
    Brain Res; 1987 Jul; 415(2):337-41. PubMed ID: 3607501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval sea lamprey.
    Cohen AH; Mackler SA; Selzer ME
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2763-6. PubMed ID: 3458237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: kinematics and electromyography.
    Davis GR; Troxel MT; Kohler VJ; Grossmann EM; McClellan AD
    Exp Brain Res; 1993; 97(1):83-95. PubMed ID: 8131834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey.
    Dubuc R; Grillner S
    Brain Res; 1989 Mar; 483(1):196-200. PubMed ID: 2650805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey.
    Davis GR; McClellan AD
    J Comp Neurol; 1994 Jun; 344(1):65-82. PubMed ID: 8063956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neuronal bases of locomotion in lamprey--in vitro studies of the brainstem-spinal cord.
    Grillner S; Wallén P; Brodin L; Christenson J; Dubuc R; Hill R; Ohta Y
    Acta Biol Hung; 1988; 39(2-3):145-9. PubMed ID: 3077001
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional regeneration and restoration of locomotor activity following spinal cord transection in the lamprey.
    McClellan AD
    Prog Brain Res; 1994; 103():203-17. PubMed ID: 7886205
    [No Abstract]   [Full Text] [Related]  

  • 16. Descending control and sensory gating of 'fictive' swimming and turning responses elicited in an in vitro preparation of the lamprey brainstem/spinal cord.
    McClellan AD
    Brain Res; 1984 Jun; 302(1):151-62. PubMed ID: 6733501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional regeneration and recovery of locomotor activity in spinally transected lamprey.
    McClellan AD
    J Exp Zool; 1992 Mar; 261(3):274-87. PubMed ID: 1629660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of functional synapses between individual recognizable neurons in the lamprey spinal cord.
    Mackler SA; Selzer ME
    Science; 1985 Aug; 229(4715):774-6. PubMed ID: 2992085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for functional regeneration in the adult lamprey spinal cord following transection.
    Cohen AH; Baker MT; Dobrov TA
    Brain Res; 1989 Sep; 496(1-2):368-72. PubMed ID: 2804650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasic variations of extracellular potassium during fictive swimming in the lamprey spinal cord in vitro.
    Wallén P; Grafe P; Grillner S
    Acta Physiol Scand; 1984 Mar; 120(3):457-63. PubMed ID: 6741576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.