BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 6640526)

  • 1. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase.
    Heller EP; Goldthwait DA
    Cancer Res; 1983 Dec; 43(12 Pt 1):5747-53. PubMed ID: 6640526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The release of 3-methyladenine from nucleosomal DNA by a 3-methyladenine DNA glycosylase.
    Price JA; Heller E; Goldthwait DA
    Carcinogenesis; 1983; 4(2):145-52. PubMed ID: 6337736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of 7-alkylguanines from N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea-modified DNA by 3-methyladenine DNA glycosylase II.
    Habraken Y; Carter CA; Kirk MC; Ludlum DB
    Cancer Res; 1991 Jan; 51(2):499-503. PubMed ID: 1985769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of DNA glycosylases on chromatin structure.
    Ishiwata K; Oikawa A
    Nucleic Acids Symp Ser; 1981; (10):149-52. PubMed ID: 7312640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undermethylation of DNA in mononucleosomes solubilized by micrococcal nuclease digestion of HeLa cell nuclei.
    Hatayama T; Nakamura T; Yukioka M
    Biochem Int; 1984 Aug; 9(2):251-8. PubMed ID: 6487345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of base excision repair in the repair of DNA adducts formed by a series of nitrogen mustard-containing analogues of distamycin of increasing binding site size.
    Brooks N; McHugh PJ; Lee M; Hartley JA
    Anticancer Drug Des; 1999 Feb; 14(1):11-8. PubMed ID: 10363024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of chromatin structure on the distribution of DNA repair synthesis studied by nuclease digestion.
    Bodell WJ; Banerjee MR
    Nucleic Acids Res; 1979 Jan; 6(1):359-70. PubMed ID: 424297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of the antitumor protein auromomycin on HeLa S3 nuclei. Release of soluble chromatin.
    Rauscher F; Mueller G; Beerman T
    Mol Pharmacol; 1983 Jul; 24(1):97-102. PubMed ID: 6306438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of alkylation damage in human lymphocyte DNA with the comet assay.
    Collins AR; Dusinská M; Horská A
    Acta Biochim Pol; 2001; 48(3):611-4. PubMed ID: 11833769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tobacco BY-2 cells excise both 3-methyladenine and 7-methylguanine from methylated DNA.
    Kraszewska E; Dobrzańska M; Tudek B
    Mutat Res; 1998 Nov; 409(2):91-5. PubMed ID: 9838925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II.
    Matijasevic Z; Sekiguchi M; Ludlum DB
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9331-4. PubMed ID: 1409640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of chloroethyl ethyl sulfide-modified DNA bases by bacterial 3-methyladenine-DNA glycosylases I and II.
    Habraken Y; Ludlum DB
    Carcinogenesis; 1989 Mar; 10(3):489-92. PubMed ID: 2647317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast rDNA locus: a model system to study DNA repair in chromatin.
    Conconi A
    DNA Repair (Amst); 2005 Jul; 4(8):897-908. PubMed ID: 15996904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence in Escherichia coli that N3-methyladenine lesions and cytotoxicity induced by a minor groove binding methyl sulfonate ester can be modulated in vivo by netropsin.
    Shah D; Gold B
    Biochemistry; 2003 Nov; 42(43):12610-6. PubMed ID: 14580207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase.
    Noll DM; Gogos A; Granek JA; Clarke ND
    Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of O6-methyl-guanine residues in DNA takes place by a similar mechanism in extracts from HeLa cells, human liver, and rat liver.
    Myrnes B; Giercksky KE; Krokan H
    J Cell Biochem; 1982; 20(4):381-92. PubMed ID: 7183679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the nucleosome core particle of chromatin in chicken erythrocytes visualized by using atomic force microscopy.
    Zhao H; Zhang Y; Zhang SB; Jiang C; He QY; Li MQ; Qian RL
    Cell Res; 1999 Dec; 9(4):255-60. PubMed ID: 10628834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both purified human 1,N6-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N6-ethenoadenine and 3-methyladenine.
    Singer B; Antoccia A; Basu AK; Dosanjh MK; Fraenkel-Conrat H; Gallagher PE; Kuśmierek JT; Qiu ZH; Rydberg B
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9386-90. PubMed ID: 1409645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific interaction of wild-type and truncated mouse N-methylpurine-DNA glycosylase with ethenoadenine-containing DNA.
    Roy R; Biswas T; Hazra TK; Roy G; Grabowski DT; Izumi T; Srinivasan G; Mitra S
    Biochemistry; 1998 Jan; 37(2):580-9. PubMed ID: 9425080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of 3-methyladenine-DNA glycosylase from Escherichia coli.
    Riazuddin S; Lindahl T
    Biochemistry; 1978 May; 17(11):2110-8. PubMed ID: 352392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.