These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6641810)

  • 1. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen metabolism and spicule formation in sea urchin micromeres.
    Blankenship J; Benson S
    Exp Cell Res; 1984 May; 152(1):98-104. PubMed ID: 6714328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of Sea Urchin Micromeres: Correlation between Specific Protein Synthesis and Spicule Formation: (micromere/differentiation/protein synthesis/sea urchin).
    Kitajima T
    Dev Growth Differ; 1986 May; 28(3):233-242. PubMed ID: 37281194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis and secretion of collagen by cultured sea urchin micromeres.
    Benson S; Smith L; Wilt F; Shaw R
    Exp Cell Res; 1990 May; 188(1):141-6. PubMed ID: 2328772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spicule Formation-Inducing Substance in Sea Urchin Embryo: (sea urchin embryo/spicule/micromere/blastocoelic fluid).
    Kiyomoto M; Tsukahara J
    Dev Growth Differ; 1991 Oct; 33(5):443-450. PubMed ID: 37282224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass isolation and culture of sea urchin micromeres.
    Harkey MA; Whiteley AH
    In Vitro Cell Dev Biol; 1985 Feb; 21(2):108-13. PubMed ID: 4008427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isotopic effects of D2O in developing sea urchin eggs.
    Sumitro SB; Sato H
    Cell Struct Funct; 1989 Feb; 14(1):95-111. PubMed ID: 2720801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-Induced Outgrowth of Pseudopodial Cables from Cultured Micromere-Derived Cells Isolated from Sea Urchin Embryos at the 16 Cell Stage, with Special Reference to the Insulin-Receptor.: (sea urchin/micromere/insulin/psedopodial cable/receptor).
    Kuno SI; Nagura T; Yasumasu I
    Dev Growth Differ; 1994 Apr; 36(2):165-175. PubMed ID: 37281169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromere formation and its evolutionary implications in the sea urchin.
    Emura N; Yajima M
    Curr Top Dev Biol; 2022; 146():211-238. PubMed ID: 35152984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.
    Mitsunaga K; Fujino Y; Yasumasu I
    J Biochem; 1986 Dec; 100(6):1607-15. PubMed ID: 2952640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation of Micromeres, Mesomeres, and Macromeres of 16-cell Stage Sea Urchin Embryos by Elutriation*: (sea urchin embryo/blastomere/elutriation/micromere/mesomere/macromere).
    Yamaguchi M; Kinoshita T; Ohba Y
    Dev Growth Differ; 1994 Aug; 36(4):381-387. PubMed ID: 37281624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromere Differentiation in the Sea Urchin Embryo: Two-Dimensional Gel Electrophoretic Analysis of Newly Synthesized Proteins: (sea urchin/micromere/protein synthesis/differentiation).
    Matsuda R; Kitajima T; Ohinata H; Katoh Y; Higashinakagawa T
    Dev Growth Differ; 1988 Feb; 30(1):25-33. PubMed ID: 37280888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Several Cell Responses to Insulin of Cultured Cells Derived from Micromeres, Isolated from Sea Urchin Embryos at the 16 Cell Stage: (Sea urchin/development/morphogenesis/insulin/micromere).
    Kuno SI; Mitsunaga-Nakatsubo K; Nagura T; Fujiwara A; Yasumasu I
    Dev Growth Differ; 1994 Aug; 36(4):397-408. PubMed ID: 37281798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesive and migratory behavior of normal and sulfate-deficient sea urchin cells in vitro.
    Venkatasubramanian K; Solursh M
    Exp Cell Res; 1984 Oct; 154(2):421-31. PubMed ID: 6479237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does phosphatidylinositol 3-kinase play a role in insulin-induced outgrowth of pseudopodial cables in cultured cells derived from micromeres of sea urchin embryos?
    Kuno SI; Yasumasu I
    Dev Growth Differ; 1996 Jun; 38(3):281-289. PubMed ID: 37281666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.