These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 6641810)

  • 21. Small micromeres contribute to the germline in the sea urchin.
    Yajima M; Wessel GM
    Development; 2011 Jan; 138(2):237-43. PubMed ID: 21177341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis.
    Urry LA; Hamilton PC; Killian CE; Wilt FH
    Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction.
    Chuang CK; Wikramanayake AH; Mao CA; Li X; Klein WH
    Dev Genet; 1996; 19(3):231-7. PubMed ID: 8952065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin.
    Cognetti G; Shaw BR
    Nucleic Acids Res; 1981 Nov; 9(21):5609-21. PubMed ID: 7312627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells.
    Roe JL; Park HR; Strittmatter WJ; Lennarz WJ
    Exp Cell Res; 1989 Apr; 181(2):542-50. PubMed ID: 2924802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo.
    Kabakoff B; Lennarz WJ
    J Cell Biol; 1990 Aug; 111(2):391-400. PubMed ID: 2143193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The organic matrix of the skeletal spicule of sea urchin embryos.
    Benson SC; Benson NC; Wilt F
    J Cell Biol; 1986 May; 102(5):1878-86. PubMed ID: 3517009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells.
    Iwata M; Nakano E
    Cell Differ; 1985 Jul; 17(1):57-62. PubMed ID: 4028164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental potential of small micromeres in sea urchin embryos.
    Kurihara H; Amemiya S
    Zoolog Sci; 2005 Aug; 22(8):845-52. PubMed ID: 16141697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis.
    Killian CE; Wilt FH
    Exp Cell Res; 2017 Oct; 359(1):205-214. PubMed ID: 28782554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos.
    De Simone DW; Spiegel M
    Exp Cell Res; 1985 Jan; 156(1):7-14. PubMed ID: 3965293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of calcium elevation in the micromeres of sea urchin embryos.
    Yazaki I; Abe M; Santella L; Koyama Y
    Biol Cell; 2004 Mar; 96(2):153-67. PubMed ID: 15050370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micromere-derived cells isolated from sea urchin embryos.
    Kuno S; Kawamoto M; Okuyama M; Yasumasu I
    Dev Growth Differ; 1999 Apr; 41(2):193-9. PubMed ID: 10223715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microinjection methods for sea urchin eggs and blastomeres.
    Yaguchi J
    Methods Cell Biol; 2019; 150():173-188. PubMed ID: 30777175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion.
    Saitoh M; Kuroda R; Muranaka Y; Uto N; Murai J; Kuroda H
    Dev Growth Differ; 2010 Dec; 52(9):735-46. PubMed ID: 21158753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro.
    Decker GL; Morrill JB; Lennarz WJ
    Development; 1987 Oct; 101(2):297-312. PubMed ID: 3446478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.