These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6643438)

  • 1. Isolation and comparison of two molecular species of the BAL 31 nuclease from Alteromonas espejiana with distinct kinetic properties.
    Wei CF; Alianell GA; Bencen GH; Gray HB
    J Biol Chem; 1983 Nov; 258(22):13506-12. PubMed ID: 6643438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminally directed hydrolysis of duplex ribonucleic acid catalyzed by a species of the BAL 31 nuclease from Alteromonas espejiana.
    Bencen GH; Wei CF; Robberson DL; Gray HB
    J Biol Chem; 1984 Nov; 259(21):13584-9. PubMed ID: 6490665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursor-product relationship of larger to smaller molecular forms of the BAL 31 nuclease from Alteromonas espejiana: preferential removal of duplex exonuclease relative to endonuclease activity by proteolysis.
    Hauser CR; Gray HB
    Arch Biochem Biophys; 1990 Feb; 276(2):451-9. PubMed ID: 2306107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular intermediates with missing nucleotides in the conversion of supercoiled or nicked circular to linear duplex DNA catalyzed by two species of BAL 31 nuclease.
    Przykorska AK; Hauser CR; Gray HB
    Biochim Biophys Acta; 1988 Jan; 949(1):16-26. PubMed ID: 3275464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of exonuclease action of BAL 31 nuclease.
    Zhou XG; Gray HB
    Biochim Biophys Acta; 1990 May; 1049(1):83-91. PubMed ID: 2357468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single apurinic site can elicit BAL 31 nuclease-catalyzed cleavage in duplex DNA.
    Wei CF; Legerski RJ; Alianell GA; Robberson DL; Gray HB
    Biochim Biophys Acta; 1984 Sep; 782(4):408-14. PubMed ID: 6477917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular nucleases of Alteromonas espejiana BAL 31.IV. The single strand-specific deoxyriboendonuclease activity as a probe for regions of altered secondary structure in negatively and positively supercoiled closed circular DNA.
    Lau PP; Gray HB
    Nucleic Acids Res; 1979 Jan; 6(1):331-57. PubMed ID: 424296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of BAL 31 nuclease action on small substrates and single-stranded DNA.
    Lu T; Gray HB
    Biochim Biophys Acta; 1995 Sep; 1251(2):125-8. PubMed ID: 7669801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence specificity of BAL 31 nuclease for ssDNA revealed by synthetic oligomer substrates containing homopolymeric guanine tracts.
    Marrone A; Ballantyne J
    PLoS One; 2008; 3(10):e3595. PubMed ID: 18974878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxyribonuclease A of chick embryo. Partial purification and characterization of the enzyme.
    Hori K; Baba M; Arai Y; Moriya T
    J Biol Chem; 1983 Jan; 258(2):960-6. PubMed ID: 6822517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and some properties of ATP-dependent deoxyribonuclease of Caulobacter crescentus.
    Markiewicz Z; Kwiatkowski Z
    Biochim Biophys Acta; 1981 Oct; 655(3):383-9. PubMed ID: 7284394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of ATP in phosphodiester bond hydrolysis catalyzed by the recBC deoxyribonuclease of Escherichia coli.
    Eichler DC; Lehman IR
    J Biol Chem; 1977 Jan; 252(2):499-503. PubMed ID: 319095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a nuclease activity specific for G4 tetrastranded DNA.
    Liu Z; Frantz JD; Gilbert W; Tye BK
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3157-61. PubMed ID: 8475054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exonuclease II from Saccharomyces cerevisiae. An enzyme which liberates 5'-deoxyribomononucleotides from single-stranded DNA by a 5' goes to 3' mode of hydrolysis.
    Villadsen IS; Bjørn SE; Vrang A
    J Biol Chem; 1982 Jul; 257(14):8177-82. PubMed ID: 6282877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of the deoxyribonucleic acid polymerase induced by vaccinia virus.
    Challberg MD; Englund PT
    J Biol Chem; 1979 Aug; 254(16):7812-9. PubMed ID: 468791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ
    Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of wheat seedling nuclease toward single-stranded nucleic acids.
    Kroeker WD; Hanson DM; Fairley JL
    J Biol Chem; 1975 May; 250(10):3767-72. PubMed ID: 1126934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of DNA degradation by the ATP-dependent DNase from Hemophilus influenzae Rd.
    Wilcox KW; Smith HO
    J Biol Chem; 1976 Oct; 251(19):6127-34. PubMed ID: 1085772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mung bean nuclease I. Terminally directed hydrolysis of native DNA.
    Kroeker WD; Kowalski D; Laskowski M
    Biochemistry; 1976 Oct; 15(20):4463-7. PubMed ID: 9974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of mammalian deoxyribonuclease V, a double strand 3' to 5' and 5' to 3' exonuclease, with deoxyribonucleic acid polymerase-beta from the Novikoff hepatoma.
    Mosbaugh DW; Meyer RR
    J Biol Chem; 1980 Nov; 255(21):10239-47. PubMed ID: 6253467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.