BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6643451)

  • 1. Reductive hydroxyethylation of hemoglobin A. Functional properties of hemoglobin A selectively hydroxyethylated or dihydroxypropylated at the alpha-amino groups.
    Acharya AS; Sussman LG
    J Biol Chem; 1983 Nov; 258(22):13761-7. PubMed ID: 6643451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity in the modification of the alpha-amino groups of hemoglobin on reductive alkylation with aliphatic carbonyl compounds. Influence of derivatization on the polymerization of hemoglobin S.
    Acharya AS; Sussman LG; Manning JM
    J Biol Chem; 1985 May; 260(10):6039-46. PubMed ID: 3997812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective carboxymethylation of the alpha-amino groups of hemoglobin. Effect on functional properties.
    DiDonato A; Fantl WJ; Acharya AS; Manning JM
    J Biol Chem; 1983 Oct; 258(19):11890-5. PubMed ID: 6619148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of reductive dihydroxypropylation of amino groups of proteins in primary structural studies: identification of phenylthiohydantoin derivative of epsilon-dihydroxypropyl-lysine residues by high-performance liquid chromatography.
    Acharya AS; Sussman LG; Manjula BN
    J Chromatogr; 1984 Aug; 297():37-48. PubMed ID: 6436282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydroxypropylation of amino groups of proteins: use of glyceraldehyde as a reversible agent for reductive alkylation.
    Acharya AS; Manjula BN
    Biochemistry; 1987 Jun; 26(12):3524-30. PubMed ID: 3651395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic modification at the amino termini of hemoglobin A.
    Acharya AS; Bobelis DJ; White SP
    J Biol Chem; 1994 Jan; 269(4):2796-804. PubMed ID: 8300612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldimine to ketoamine isomerization (Amadori rearrangement) potential at the individual nonenzymic glycation sites of hemoglobin A: preferential inhibition of glycation by nucleophiles at sites of low isomerization potential.
    Acharya AS; Roy RP; Dorai B
    J Protein Chem; 1991 Jun; 10(3):345-58. PubMed ID: 1910466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random chemical modification of the oxygen-linked chloride-binding sites of hemoglobin: those in the central dyad axis may influence the transition between deoxy- and oxy-hemoglobin.
    Ueno H; Popowicz AM; Manning JM
    J Protein Chem; 1993 Oct; 12(5):561-70. PubMed ID: 8141998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reversibility of the ketoamine linkages of aldoses with proteins.
    Acharya AS; Sussman LG
    J Biol Chem; 1984 Apr; 259(7):4372-8. PubMed ID: 6707011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl acetyl phosphate as a covalent probe for anion-binding sites in human and bovine hemoglobins.
    Ueno H; Pospischil MA; Manning JM
    J Biol Chem; 1989 Jul; 264(21):12344-51. PubMed ID: 2745446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specifically carboxymethylated hemoglobin as an analogue of carbamino hemoglobin. Solution and X-ray studies of carboxymethylated hemoglobin and X-ray studies of carbamino hemoglobin.
    Fantl WJ; Di Donato A; Manning JM; Rogers PH; Arnone A
    J Biol Chem; 1987 Sep; 262(26):12700-13. PubMed ID: 3114261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of the amino groups of carbonmonoxyhemoglobin S with glyceraldehyde.
    Acharya AS; Manning JM
    J Biol Chem; 1980 Feb; 255(4):1406-12. PubMed ID: 7354037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl acetyl phosphate: a novel acetylating agent. Its site-specific modification of human hemoglobin A.
    Ueno H; Pospischil MA; Kluger R; Manning JM
    J Chromatogr; 1986 May; 359():193-201. PubMed ID: 3733926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric interspecies hybrids of mouse and human hemoglobin: molecular basis of their abnormal oxygen affinity.
    Roy RP; Nacharaju P; Nagel RL; Acharya AS
    J Protein Chem; 1995 Feb; 14(2):81-8. PubMed ID: 7786409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific modification of the carboxyl groups of hemoglobin S.
    Seetharam R; Manning JM; Acharya AS
    J Biol Chem; 1983 Dec; 258(24):14810-5. PubMed ID: 6654893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of carboxymethylated cross-linked hemoglobin A.
    Fantl WJ; Manning LR; Ueno H; Di Donato A; Manning JM
    Biochemistry; 1987 Sep; 26(18):5755-61. PubMed ID: 3676286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus laevis hemoglobin and its hybrids with hemoglobin A+.
    Condò SG; Giardina B; Bellelli A; Brunori M
    Biochemistry; 1987 Oct; 26(21):6718-22. PubMed ID: 3427040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ligation state and concentration of hemoglobin A on its cross-linking by glycolaldehyde: functional properties of cross-linked, carboxymethylated hemoglobin.
    Manning LR; Manning JM
    Biochemistry; 1988 Aug; 27(17):6640-4. PubMed ID: 3219360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of His HC3 (146) beta in the Bohr effect of human hemoglobin. Studies of native and N-ethylmaleimide-treated hemoglobin A and hemoglobin Cowtown (beta 146 His replaced by Leu).
    Shih T; Jones RT; Bonaventura J; Bonaventura C; Schneider RG
    J Biol Chem; 1984 Jan; 259(2):967-74. PubMed ID: 6693406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of acetaldehyde with hemoglobin.
    San George RC; Hoberman HD
    J Biol Chem; 1986 May; 261(15):6811-21. PubMed ID: 3700416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.