These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 6643465)
1. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. White JR; Naccache PH; Sha'afi RI J Biol Chem; 1983 Nov; 258(22):14041-7. PubMed ID: 6643465 [TBL] [Abstract][Full Text] [Related]
2. Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein. Särndahl E; Lindroth M; Bengtsson T; Fällman M; Gustavsson J; Stendahl O; Andersson T J Cell Biol; 1989 Dec; 109(6 Pt 1):2791-9. PubMed ID: 2512299 [TBL] [Abstract][Full Text] [Related]
3. Release of oxygen metabolites from chemoattractant-stimulated neutrophils is inhibited by resting platelets: role of extracellular adenosine and actin polymerization. Bengtsson T; Zalavary S; Stendahl O; Grenegård M Blood; 1996 May; 87(10):4411-23. PubMed ID: 8639803 [TBL] [Abstract][Full Text] [Related]
4. The effects of sulfhydryl inhibitors and cytochalasin on the cytoplasmic and cytoskeletal actin of human neutrophils. Wallace PJ; Packman CH; Wersto RP; Lichtman MA J Cell Physiol; 1987 Aug; 132(2):325-30. PubMed ID: 3624318 [TBL] [Abstract][Full Text] [Related]
5. Effects of chemotactic factors and other agents on the amounts of actin and a 65,000-mol-wt protein associated with the cytoskeleton of rabbit and human neutrophils. Yassin R; Shefcyk J; White JR; Tao W; Volpi M; Molski TF; Naccache PH; Feinstein MB; Sha'afi RI J Cell Biol; 1985 Jul; 101(1):182-8. PubMed ID: 2989297 [TBL] [Abstract][Full Text] [Related]
6. Actin assembly and regulation of neutrophil function: effects of cytochalasin B and tetracaine on chemotactic peptide-induced O2- production and degranulation. Bengtsson T; Dahlgren C; Stendahl O; Andersson T J Leukoc Biol; 1991 Mar; 49(3):236-44. PubMed ID: 1847714 [TBL] [Abstract][Full Text] [Related]
7. Effect of granulocyte-macrophage colony-stimulating factor on superoxide production in cytoplasts and intact human neutrophils: role of protein kinase and G-proteins. Mege JL; Gomez-Cambronero J; Molski TF; Becker EL; Sha'afi RI J Leukoc Biol; 1989 Aug; 46(2):161-8. PubMed ID: 2545809 [TBL] [Abstract][Full Text] [Related]
8. Dissociation of the 47-kilodalton protein phosphorylation from degranulation and superoxide production in neutrophils. Sha'afi RI; Molski TF; Gomez-Cambronero J; Huang CK J Leukoc Biol; 1988 Jan; 43(1):18-27. PubMed ID: 2826626 [TBL] [Abstract][Full Text] [Related]
9. Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils. Andersson T; Dahlgren C; Pozzan T; Stendahl O; Lew PD Mol Pharmacol; 1986 Nov; 30(5):437-43. PubMed ID: 2430168 [TBL] [Abstract][Full Text] [Related]
10. The diacylglycerol kinase inhibitor R59022 potentiates superoxide production but not secretion induced by fMet-Leu-Phe: effects of leupeptin and the protein kinase C inhibitor H-7. Gomez-Cambronero J; Molski TF; Becker EL; Sha'afi RI Biochem Biophys Res Commun; 1987 Oct; 148(1):38-46. PubMed ID: 2823810 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of a histone H4 protein kinase in Triton X-100 lysates of rabbit peritoneal neutrophils pretreated with chemotactic factors. Effect of fMet-Leu-Phe and partial characterization of the protein kinase. Huang CK; Laramee GF J Biol Chem; 1988 Sep; 263(26):13144-51. PubMed ID: 2843511 [TBL] [Abstract][Full Text] [Related]
12. The role of the cytosolic free Ca2+ transient for fMet-Leu-Phe induced actin polymerization in human neutrophils. Bengtsson T; Stendahl O; Andersson T Eur J Cell Biol; 1986 Dec; 42(2):338-43. PubMed ID: 3816821 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the priming effect of phorbol myristate acetate and phorbol dibutyrate on fMet-Leu-Phe-induced oxidative burst in human neutrophils. Gaudry M; Combadiere C; Marquetty C; Hakim J Immunopharmacology; 1990; 20(1):45-56. PubMed ID: 2172183 [TBL] [Abstract][Full Text] [Related]
14. Characterization of formylmethionyl-leucyl-phenylalanine stimulation of inositol trisphosphate accumulation in rabbit neutrophils. Bradford PG; Rubin RP Mol Pharmacol; 1985 Jan; 27(1):74-8. PubMed ID: 2981403 [TBL] [Abstract][Full Text] [Related]
16. Stimulus-induced dissociation of alpha subunits of heterotrimeric GTP-binding proteins from the cytoskeleton of human neutrophils. Särndahl E; Bokoch GM; Stendahl O; Andersson T Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6552-6. PubMed ID: 8341668 [TBL] [Abstract][Full Text] [Related]
17. The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formylmethionyl-leucylphenylalanine or ionomycin. Cockcroft S; Bennett JP; Gomperts BD Biochem J; 1981 Dec; 200(3):501-8. PubMed ID: 7342966 [TBL] [Abstract][Full Text] [Related]
18. Receptor-induced translocation of activated guanine-nucleotide-binding protein alpha i subunits to the cytoskeleton in myeloid differentiated human leukemia (HL-60) cells. Wieland T; Meyer zu Heringdorf D; Schulze RA; Kaldenberg-Stasch S; Jakobs KH Eur J Biochem; 1996 Aug; 239(3):752-8. PubMed ID: 8774723 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of the diradylglycerol responses of stimulated phagocytes. Dougherty RW; Dubay GR; Niedel JE J Biol Chem; 1989 Jul; 264(19):11263-9. PubMed ID: 2500437 [TBL] [Abstract][Full Text] [Related]
20. Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? Sha'afi RI; Shefcyk J; Yassin R; Molski TF; Volpi M; Naccache PH; White JR; Feinstein MB; Becker EL J Cell Biol; 1986 Apr; 102(4):1459-63. PubMed ID: 3082894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]