These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6643651)

  • 1. Tissue interactions in basal regions of the cranial neuroepithelium in the C57BL mouse.
    Wilson DB
    J Craniofac Genet Dev Biol; 1983; 3(3):269-79. PubMed ID: 6643651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine structural aspects of the cranial neuroepithelium in early embryos of the rhesus monkey.
    Wilson DB; Hendrickx AG
    J Craniofac Genet Dev Biol; 1984; 4(2):85-94. PubMed ID: 6746879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early development of the brain and spinal cord in dysraphic mice: a transmission electron microscopic study.
    Wilson DB; Finta LA
    J Comp Neurol; 1980 Mar; 190(2):363-71. PubMed ID: 6991554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation.
    Smith JL; Schoenwolf GC
    J Exp Zool; 1989 Apr; 250(1):49-62. PubMed ID: 2723610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histochemistry of the developing notochord, perichordal sheath and vertebrae in Danforth's short-tail (sd) and normal C57BL/6 mice.
    Paavola LG; Wilson DB; Center EM
    J Embryol Exp Morphol; 1980 Feb; 55():227-45. PubMed ID: 7373196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of neural crest formation in the midbrain/rostral hindbrain and preotic hindbrain regions of the mouse embryo.
    Nichols DH
    Am J Anat; 1987 Jun; 179(2):143-54. PubMed ID: 3618526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure of the lumbosacral neural folds in the mouse embryo.
    Wilson DB; Finta LA
    J Embryol Exp Morphol; 1980 Feb; 55():279-90. PubMed ID: 7373198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos.
    Sausedo RA; Schoenwolf GC
    Anat Rec; 1994 May; 239(1):103-12. PubMed ID: 8037374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
    Smith JL; Schoenwolf GC; Quan J
    J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental anomalies induced by all-trans-retinoic acid in fetal mice: II. Induction of abnormal neuroepithelium.
    Yasuda Y; Konishi H; Kihara T; Tanimura T
    Teratology; 1987 Jun; 35(3):355-66. PubMed ID: 3629516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural analysis of basal neuroepithelial cells in dysraphic mice.
    Wilson DB
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1985; 48(1):9-17. PubMed ID: 2858942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant differentiation of neuroepithelial cells in developing mouse brains subsequent to retinoic acid exposure in utero.
    Yasuda Y; Konishi H; Matsuo T; Kihara T; Tanimura T
    Am J Anat; 1989 Nov; 186(3):271-84. PubMed ID: 2618927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in cranial morphogenesis in the Lp mutant mouse.
    Wilson DB; Wyatt DP
    J Craniofac Genet Dev Biol; 1995; 15(4):182-9. PubMed ID: 8719347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Vimentin and neuroepithelial cell differentiation in the spinal cord of chick embryos: an immunohistochemical study].
    Kumano I; Iwatsuki H; Suda M; Sasaki K
    Kaibogaku Zasshi; 1999 Jun; 74(3):317-23. PubMed ID: 10429376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense inhibition of engrailed genes in mouse embryos reveals roles for these genes in craniofacial and neural tube development.
    Augustine KA; Liu ET; Sadler TW
    Teratology; 1995 May; 51(5):300-10. PubMed ID: 7482351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces.
    Nakao T; Ishizawa A; Ogawa R
    Anat Rec; 1988 Jun; 221(2):663-77. PubMed ID: 3414988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometric analyses of changes in cell shape in the neuroepithelium of mammalian embryos.
    Moore DC; Stanisstreet M; Evans GE
    J Anat; 1987 Dec; 155():87-99. PubMed ID: 3503056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of proline-containing extracellular connective tissue fibrils by chick notochordal epithelium in vitro.
    Lauscher CK; Carlson EC
    Anat Rec; 1975 Jun; 182(2):151-67. PubMed ID: 1155795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis.
    Barnes JD; Crosby JL; Jones CM; Wright CV; Hogan BL
    Dev Biol; 1994 Jan; 161(1):168-78. PubMed ID: 7904966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in the formation of the human caudal spinal cord.
    Saraga-Babić M; Sapunar D; Wartiovaara J
    J Hirnforsch; 1995; 36(3):341-7. PubMed ID: 7560906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.