BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6644300)

  • 1. Catecholamine-derived tetrahydroisoquinolines: O-methylation patterns and regional brain distribution following intraventricular administration in rats.
    Collins MA; Origitano TC
    J Neurochem; 1983 Dec; 41(6):1569-75. PubMed ID: 6644300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of catechol-O-methyltransferase by 6,7-dihydroxy-3,4-dihydroisoquinolines related to dopamine: demonstration using liquid chromatography and a novel substrate for O-methylation.
    Cheng BY; Origitano TC; Collins MA
    J Neurochem; 1987 Mar; 48(3):779-86. PubMed ID: 2433397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting effects of catecholic and O-methylated tetrahydroisoquinolines on hydroxyl radical production.
    Nappi AJ; Vass E; Collins MA
    Biochim Biophys Acta; 1999 Sep; 1434(1):64-73. PubMed ID: 10556560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-methylation of (+)-(R)- and (-)-(S)-6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) in the presence of pig brain catechol-O-methyltransferase.
    Hötzl BK; Thomas H
    Chirality; 1997; 9(4):367-72. PubMed ID: 9275315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study.
    Maruyama W; Nakahara D; Ota M; Takahashi T; Takahashi A; Nagatsu T; Naoi M
    J Neurochem; 1992 Aug; 59(2):395-400. PubMed ID: 1629715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple interferences on catecholamine metabolism by tetrahydroisoquinolines (TIQs).
    Smargiassi A; Biagini C; Mutti A; Bergamaschi E; Bacchini A; Alinovi R; Cavazzini S
    Neurotoxicology; 1994; 15(3):765-8. PubMed ID: 7854617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection.
    Peana AT; Bassareo V; Acquas E
    Neurotox Res; 2019 Nov; 36(4):653-668. PubMed ID: 31049880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains.
    Naoi M; Maruyama W; Nagy GM
    Neurotoxicology; 2004 Jan; 25(1-2):193-204. PubMed ID: 14697894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of rodent brain monoamine oxidase and tyrosine hydroxylase by endogenous compounds - 1,2,3,4-tetrahydro-isoquinoline alkaloids.
    Patsenka A; Antkiewicz-Michaluk L
    Pol J Pharmacol; 2004; 56(6):727-34. PubMed ID: 15662085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas chromatographic analysis of endogenous catecholamines, phenolic amines and derived isoquinolines using short glass capillary columns and electron-capture detection.
    Origitano TC; Collins MA
    J Chromatogr; 1984 Nov; 311(1):17-29. PubMed ID: 6520159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BIA 3-202, a novel catechol-O-methyltransferase inhibitor, enhances the availability of L-DOPA to the brain and reduces its O-methylation.
    Parada A; Loureiro AI; Vieira-Coelho MA; Hainzl D; Soares-da-Silva P
    Eur J Pharmacol; 2001 May; 420(1):27-32. PubMed ID: 11412836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroamine condensations in human subjects.
    Collins MA
    Adv Exp Med Biol; 1980; 126():87-102. PubMed ID: 7405716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic regional study of brain salsolinol levels during and immediately following chronic ethanol ingestion in rats.
    Matsubara K; Fukushima S; Fukui Y
    Brain Res; 1987 Jun; 413(2):336-43. PubMed ID: 3607483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselectivity of catechol O-methyltransferase. The effect of pH on the site of O-methylation of fluorinated norepinephrines.
    Thakker DR; Boehlert C; Kirk KL; Antkowiak R; Creveling CR
    J Biol Chem; 1986 Jan; 261(1):178-84. PubMed ID: 3753600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-O-methyltransferase-catalyzed dopamine 3-methylation.
    Meyer MR; Maurer HH
    Chem Res Toxicol; 2009 Jun; 22(6):1205-11. PubMed ID: 19462939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and penetration through blood-brain barrier of parkinsonism-related compounds. 1,2,3,4-Tetrahydroisoquinoline and 1-methyl-1,2,3,4-tetrahydroisoquinoline.
    Kikuchi K; Nagatsu Y; Makino Y; Mashino T; Ohta S; Hirobe M
    Drug Metab Dispos; 1991; 19(1):257-62. PubMed ID: 1673411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamine metabolism in the brain by membrane-bound and soluble catechol-o-methyltransferase (COMT) estimated by enzyme kinetic values.
    Reenilä I; Männistö PT
    Med Hypotheses; 2001 Nov; 57(5):628-32. PubMed ID: 11735324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselective O-methylation of tetrahydropapaveroline and tetrahydroxyberbine in vivo in rat brain.
    Cashaw JL; Ruchirawat S; Nimit Y; Davis VE
    Biochem Pharmacol; 1983 Nov; 32(21):3163-9. PubMed ID: 6639684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between catechol-O-methyltransferase and phenolsulfotransferase in the metabolism of dopamine in the rat brain.
    Buu NT
    J Neurochem; 1985 Nov; 45(5):1612-9. PubMed ID: 3930664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of [3H]dopamine following intracerebroventricular injection in rats pretreated with ethanol or chloral hydrate.
    Shier WT; Koda LY; Bloom FE
    Neuropharmacology; 1983 Mar; 22(3):279-86. PubMed ID: 6843789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.