These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Orientation and spatial frequency selectivity of adaptation to color and luminance gratings. Bradley A; Switkes E; De Valois K Vision Res; 1988; 28(7):841-56. PubMed ID: 3227661 [TBL] [Abstract][Full Text] [Related]
5. Localized effects of spatial frequency adaptation. Williams DW; Wilson HR; Cowan JD J Opt Soc Am; 1982 Jul; 72(7):878-87. PubMed ID: 7108646 [TBL] [Abstract][Full Text] [Related]
6. The effect of light adaptation on scotopic spatial summation in 10-week-old infants. Hansen RM; Hamer RD; Fulton AB Vision Res; 1992 Feb; 32(2):387-92. PubMed ID: 1574853 [TBL] [Abstract][Full Text] [Related]
7. Visual adaptation is highly localized in the cat's retina. Cleland BG; Freeman AW J Physiol; 1988 Oct; 404():591-611. PubMed ID: 3253443 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity to countermodulating gratings following spatiotemporal adaptation. Bowker DO; Tulunay-Keesey U J Opt Soc Am; 1983 Apr; 73(4):427-35. PubMed ID: 6864355 [TBL] [Abstract][Full Text] [Related]
9. Spatial organization of sensitivity regulation in rod vision. MacLeod DI; Chen B; Crognale M Vision Res; 1989; 29(8):965-78. PubMed ID: 2629211 [TBL] [Abstract][Full Text] [Related]
10. Tonic interocular suppression and binocular summation in human vision. Denny N; Frumkes TE; Barris MC; Eysteinsson T J Physiol; 1991 Jun; 437():449-60. PubMed ID: 1890644 [TBL] [Abstract][Full Text] [Related]
11. Adaptation to square-wave gratings: inhibition between spatial frequency channels in the human visual system. Tolhurst DJ J Physiol; 1972 Oct; 226(1):231-48. PubMed ID: 4343317 [TBL] [Abstract][Full Text] [Related]
12. Spatial vision of the achromat: spatial frequency and orientation-specific adaptation. Greenlee MW; Magnussen S; Nordby K J Physiol; 1988 Jan; 395():661-78. PubMed ID: 3261791 [TBL] [Abstract][Full Text] [Related]
13. On the capacity of directionally selective mechanisms to encode different dimensions of moving stimuli. Pantle A; Lehmkuhle S; Caudill M Perception; 1978; 7(3):261-7. PubMed ID: 693226 [TBL] [Abstract][Full Text] [Related]
14. Evidence for non-linear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies. Burton GJ Vision Res; 1973 Jul; 13(7):1211-25. PubMed ID: 4722796 [No Abstract] [Full Text] [Related]
15. A study of interocular transfer of spatial adaptation. Bjørklund RA; Magnussen S Perception; 1981; 10(5):511-8. PubMed ID: 7339569 [TBL] [Abstract][Full Text] [Related]
16. Orientation selectivity of the human visual system as a function of retinal eccentricity and visual hemifield. Beaton A; Blakemore C Perception; 1981; 10(3):273-82. PubMed ID: 7329749 [TBL] [Abstract][Full Text] [Related]
17. An oblique effect of spatial summation. Quinn PC; Lehmkuhle S Vision Res; 1983; 23(6):655-8. PubMed ID: 6613006 [TBL] [Abstract][Full Text] [Related]
18. Adaptation to global structure induces spatially remote distortions of perceived orientation. Roach NW; Webb BS; McGraw PV J Vis; 2008 Mar; 8(3):31.1-12. PubMed ID: 18484837 [TBL] [Abstract][Full Text] [Related]
19. On the separability of two mechanisms involved in the detection of grating patterns in humans. Bodis-Wollner I; Hendley CD J Physiol; 1979 Jun; 291():251-63. PubMed ID: 480212 [TBL] [Abstract][Full Text] [Related]
20. The effect of spatial frequency adaptation on the latency of spatial contrast detection. Menees SM Vision Res; 1998 Dec; 38(24):3933-42. PubMed ID: 10211385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]