These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6644596)

  • 1. Comparative study of topological and linear free energy-related parameters for the prediction of GC retention indices.
    Buydens L; Coomans D; Vanbelle M; Massart DL; Vanden Driessche R
    J Pharm Sci; 1983 Nov; 72(11):1327-9. PubMed ID: 6644596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases.
    Matyushin DD; Sholokhova AY; Buryak AK
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between gas chromatographic behaviour and topological, physicochemical, and quantum chemically calculated charge parameters for neuroleptica.
    Buydens L; Massart DL; Geerlings P
    J Chromatogr Sci; 1985 Jul; 23(7):304-7. PubMed ID: 2863280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of retention indices by molecular topology. Chlorinated benzenes.
    Sabljić A
    J Chromatogr; 1985 Jan; 319(1):1-8. PubMed ID: 3972936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on non-polar stationary phases.
    Pavlovskii AA; Héberger K; Zenkevich IG
    J Chromatogr A; 2016 May; 1445():126-34. PubMed ID: 27062719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of quantitative structure-retention relationship models on four stationary phases with different polarity for a diverse set of flavor compounds.
    Yan J; Cao DS; Guo FQ; Zhang LX; He M; Huang JH; Xu QS; Liang YZ
    J Chromatogr A; 2012 Feb; 1223():118-25. PubMed ID: 22218329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice-fluid model for gas-liquid chromatography.
    Tao Y; Wells PS; Yi X; Yun KS; Parcher JF
    J Chromatogr A; 1999 Nov; 862(1):49-64. PubMed ID: 10588340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of retention indices by molecular topology: chlorinated alkanes.
    Sabljić A
    J Chromatogr; 1984 Nov; 314():1-12. PubMed ID: 6526876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of the retention behavior of alcohols in gas chromatography.
    Song Y; Zhou J; Zi S; Xie J; Ye Y
    Bioorg Med Chem; 2005 May; 13(9):3169-73. PubMed ID: 15809152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Correlation analysis of structures and gas chromatographic retention indices of aliphatic alcohols].
    Qin Z; Feng C
    Se Pu; 2004 Jul; 22(4):452-5. PubMed ID: 15709433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds.
    Héberger K; Zenkevich IG
    J Chromatogr A; 2010 Apr; 1217(17):2895-902. PubMed ID: 20236649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times.
    McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ
    J Chromatogr A; 2014 Feb; 1330():69-73. PubMed ID: 24484693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners.
    Wang Y; Li A; Liu H; Zhang Q; Ma W; Song W; Jiang G
    J Chromatogr A; 2006 Jan; 1103(2):314-28. PubMed ID: 16352309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal retention indices on poly(3-cyanopropylmethylsiloxane) stationary phases.
    Tello AM; Lebrón-Aguilar R; Quintanilla-López JE; Santiuste JM
    J Chromatogr A; 2009 Mar; 1216(10):1630-9. PubMed ID: 18992890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure and retention relationships for gas chromatographic data: application to alkyl pyridines on apolar and polar phases.
    Tulasamma P; Reddy KS
    J Mol Graph Model; 2006 Dec; 25(4):507-13. PubMed ID: 16713723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation performance of cucurbit[8]uril and its coordination complex with cadmium (II) in capillary gas chromatography.
    Sun T; Ji N; Qi M; Tao Z; Fu R
    J Chromatogr A; 2014 May; 1343():167-73. PubMed ID: 24745846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster and principal component analysis for Kováts' retention indices on apolar and polar stationary phases in gas chromatography.
    Dallos A; Ngo HS; Kresz R; Héberger K
    J Chromatogr A; 2008 Jan; 1177(1):175-82. PubMed ID: 18067899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of retention indices. VI: Isothermal and temperature-programmed retention indices, methylene value, functionality constant, electronic and steric effects.
    Peng CT
    J Chromatogr A; 2010 Jun; 1217(23):3683-94. PubMed ID: 20227699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study of the relationship between the new topological index A(m) and the gas chromatographic retention indices of hydrocarbons by artificial neural networks.
    Li H; Zhang YX; Xu L
    Talanta; 2005 Oct; 67(4):741-8. PubMed ID: 18970234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.