These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 6644619)
41. Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum. Gomeñuka NA; Bona RL; da Rosa RG; Peyré-Tartaruga LA Scand J Med Sci Sports; 2014 Jun; 24(3):e165-73. PubMed ID: 24102934 [TBL] [Abstract][Full Text] [Related]
42. The mass-specific energy cost of human walking is set by stature. Weyand PG; Smith BR; Puyau MR; Butte NF J Exp Biol; 2010 Dec; 213(Pt 23):3972-9. PubMed ID: 21075938 [TBL] [Abstract][Full Text] [Related]
43. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds. Jin L; Hahn ME Hum Mov Sci; 2018 Apr; 58():1-9. PubMed ID: 29331489 [TBL] [Abstract][Full Text] [Related]
44. A new definition of mechanical work done in human movement. Winter DA J Appl Physiol Respir Environ Exerc Physiol; 1979 Jan; 46(1):79-83. PubMed ID: 457534 [TBL] [Abstract][Full Text] [Related]
45. Mechanical energy oscillations of two brachiation gaits: measurement and simulation. Bertram JE; Chang YH Am J Phys Anthropol; 2001 Aug; 115(4):319-26. PubMed ID: 11471130 [TBL] [Abstract][Full Text] [Related]
46. The effect of walking speed on muscle function and mechanical energetics. Neptune RR; Sasaki K; Kautz SA Gait Posture; 2008 Jul; 28(1):135-43. PubMed ID: 18158246 [TBL] [Abstract][Full Text] [Related]
47. Biomechanics of locomotion in Asian elephants. Genin JJ; Willems PA; Cavagna GA; Lair R; Heglund NC J Exp Biol; 2010 Mar; 213(5):694-706. PubMed ID: 20154184 [TBL] [Abstract][Full Text] [Related]
48. Joint-level mechanics of the walk-to-run transition in humans. Pires NJ; Lay BS; Rubenson J J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752 [TBL] [Abstract][Full Text] [Related]
49. Effects of walking speed on gait stability and interlimb coordination in younger and older adults. Krasovsky T; Lamontagne A; Feldman AG; Levin MF Gait Posture; 2014; 39(1):378-85. PubMed ID: 24008010 [TBL] [Abstract][Full Text] [Related]
50. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands. Hubel TY; Usherwood JR J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978 [TBL] [Abstract][Full Text] [Related]
51. The 3D trajectory of the body centre of mass during adult human walking: evidence for a speed-curvature power law. Tesio L; Rota V; Perucca L J Biomech; 2011 Feb; 44(4):732-40. PubMed ID: 21075377 [TBL] [Abstract][Full Text] [Related]
52. Energetics and kinematics of walking in the barnacle goose (Branta leucopsis). Nudds RL; Gardiner JD; Tickle PG; Codd JR Comp Biochem Physiol A Mol Integr Physiol; 2010 Jul; 156(3):318-24. PubMed ID: 20138237 [TBL] [Abstract][Full Text] [Related]
53. Predicting metabolic rate across walking speed: one fit for all body sizes? Weyand PG; Smith BR; Schultz NS; Ludlow LW; Puyau MR; Butte NF J Appl Physiol (1985); 2013 Nov; 115(9):1332-42. PubMed ID: 23928111 [TBL] [Abstract][Full Text] [Related]
54. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Minetti AE; Ardigò LP; Saibene F Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138 [TBL] [Abstract][Full Text] [Related]
55. Age-related differences in adaptation during childhood: the influences of muscular power production and segmental energy flow caused by muscles. Korff T; Jensen JL Exp Brain Res; 2007 Mar; 177(3):291-303. PubMed ID: 17019608 [TBL] [Abstract][Full Text] [Related]
56. Individual limb work does not explain the greater metabolic cost of walking in elderly adults. Ortega JD; Farley CT J Appl Physiol (1985); 2007 Jun; 102(6):2266-73. PubMed ID: 17363623 [TBL] [Abstract][Full Text] [Related]
57. The pendular mechanism does not determine the optimal speed of loaded walking on gradients. Gomeñuka NA; Bona RL; da Rosa RG; Peyré-Tartaruga LA Hum Mov Sci; 2016 Jun; 47():175-185. PubMed ID: 27017543 [TBL] [Abstract][Full Text] [Related]
58. Mechanical work and energy consumption in children with cerebral palsy after single-event multilevel surgery. Marconi V; Hachez H; Renders A; Docquier PL; Detrembleur C Gait Posture; 2014 Sep; 40(4):633-9. PubMed ID: 25107323 [TBL] [Abstract][Full Text] [Related]
59. Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. Griffin TM; Tolani NA; Kram R J Appl Physiol (1985); 1999 Jan; 86(1):383-90. PubMed ID: 9887153 [TBL] [Abstract][Full Text] [Related]
60. The costs of human locomotion: maternal investment in child transport. Kramer PA Am J Phys Anthropol; 1998 Sep; 107(1):71-85. PubMed ID: 9740302 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]