These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Carotid wall as an isotropic mechanical system. Alvisi C; Bigi A; Pallotti C; Pallotti G; Re G; Roveri N Neurol Res; 1982; 4(1-2):47-61. PubMed ID: 6127645 [TBL] [Abstract][Full Text] [Related]
5. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions. Hudetz AG; Monos E Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373 [TBL] [Abstract][Full Text] [Related]
6. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. von Maltzahn WW; Warriyar RG; Keitzer WF J Biomech; 1984; 17(11):839-47. PubMed ID: 6520132 [TBL] [Abstract][Full Text] [Related]
7. The adventitia layer modulates the arterial wall elastic response to intra-aortic counterpulsation: in vivo studies. Cabrera-Fischer EI; Bia D; Zócalo Y; Wray S; Armentano R Artif Organs; 2013 Dec; 37(12):1041-8. PubMed ID: 23826722 [TBL] [Abstract][Full Text] [Related]
8. Numerical modelling of fracture in human arteries. Ferrara A; Pandolfi A Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear elastic analysis of blood vessels. Wu SG; Lee GC; Tseng NT J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535 [TBL] [Abstract][Full Text] [Related]
10. Neutral axis location in bending and Young's modulus of different layers of arterial wall. Yu Q; Zhou J; Fung YC Am J Physiol; 1993 Jul; 265(1 Pt 2):H52-60. PubMed ID: 8342664 [TBL] [Abstract][Full Text] [Related]
11. A quasi-linear constitutive relation for arterial wall materials. Demiray H J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367 [TBL] [Abstract][Full Text] [Related]
12. A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity. Rachev A; Shazly T J Biomech Eng; 2013 Aug; 135(8):84502. PubMed ID: 23722316 [TBL] [Abstract][Full Text] [Related]
13. On nonlinear viscoelastic properties of arterial tissue. Wu SG; Lee GC J Biomech Eng; 1984 Feb; 106(1):42-7. PubMed ID: 6727312 [TBL] [Abstract][Full Text] [Related]
14. Computational modeling of the arterial wall based on layer-specific histological data. Jin T; Stanciulescu I Biomech Model Mechanobiol; 2016 Dec; 15(6):1479-1494. PubMed ID: 26961512 [TBL] [Abstract][Full Text] [Related]
15. Effect of residual stress on peak cap stress in arteries. Vandiver R Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810 [TBL] [Abstract][Full Text] [Related]
16. Determination of a constitutive relation for passive myocardium: II. Parameter estimation. Humphrey JD; Strumpf RK; Yin FC J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718 [TBL] [Abstract][Full Text] [Related]
18. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall. Witthoft A; Yazdani A; Peng Z; Bellini C; Humphrey JD; Karniadakis GE J R Soc Interface; 2016 Jan; 13(114):20150964. PubMed ID: 26790998 [TBL] [Abstract][Full Text] [Related]
19. Ventricular and arterial wall stresses based on large deformation analyses. Mirsky I Biophys J; 1973 Nov; 13(11):1141-59. PubMed ID: 4754195 [TBL] [Abstract][Full Text] [Related]