BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6646062)

  • 1. Model for calculating depth dose distributions for broad electron beams.
    Werner BL; Khan FM; Deibel FC
    Med Phys; 1983; 10(5):582-8. PubMed ID: 6646062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of broad beam central axis depth dose curves from different accelerators using the universal depth dose curve model.
    Werner BL
    Acta Radiol Suppl; 1983; 364():35-41. PubMed ID: 6316738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spectra derived from depth dose distributions.
    Faddegon BA; Blevis I
    Med Phys; 2000 Mar; 27(3):514-26. PubMed ID: 10757603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.
    Bazalova-Carter M; Liu M; Palma B; Dunning M; McCormick D; Hemsing E; Nelson J; Jobe K; Colby E; Koong AC; Tantawi S; Dolgashev V; Maxim PG; Loo BW
    Med Phys; 2015 Apr; 42(4):1606-13. PubMed ID: 25832051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron fluence correction factors for various materials in clinical electron beams.
    Olivares M; DeBlois F; Podgorsak EB; Seuntjens JP
    Med Phys; 2001 Aug; 28(8):1727-34. PubMed ID: 11548943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluence and absorbed dose in high energy electron beams.
    Andreo P; Brahme A
    Acta Radiol Suppl; 1983; 364():25-33. PubMed ID: 6316737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an extendable multi-leaf collimator for clinical electron beams.
    O'Shea TP; Ge Y; Foley MJ; Faddegon BA
    Phys Med Biol; 2011 Dec; 56(23):7621-38. PubMed ID: 22086242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo model of photon beams used in radiation therapy.
    Lovelock DM; Chui CS; Mohan R
    Med Phys; 1995 Sep; 22(9):1387-94. PubMed ID: 8531863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monte Carlo investigation of fluence profiles collimated by an electron specific MLC during beam delivery for modulated electron radiation therapy.
    Deng J; Lee MC; Ma CM
    Med Phys; 2002 Nov; 29(11):2472-83. PubMed ID: 12462711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oblique incidence for broad monoenergetic proton beams.
    Jette D; Yuan J; Chen W
    Med Phys; 2010 Nov; 37(11):5683-90. PubMed ID: 21158280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo dose calculation improvements for low energy electron beams using eMC.
    Fix MK; Frei D; Volken W; Neuenschwander H; Born EJ; Manser P
    Phys Med Biol; 2010 Aug; 55(16):4577-88. PubMed ID: 20668339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of beam characteristics of a gold x-ray target and a tungsten replacement target.
    Faddegon B; Egley B; Steinberg T
    Med Phys; 2004 Jan; 31(1):91-7. PubMed ID: 14761025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.