BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 6647002)

  • 1. Intrinsic difference in erythrocyte membrane in spontaneously hypertensive rats characterized by Na+ and K+ fluxes.
    van de Ven CJ; Bohr DF
    Pflugers Arch; 1983 Sep; 399(1):74-8. PubMed ID: 6647002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats.
    Postnov YU; Orlov S; Gulak P; Shevchenko A
    Pflugers Arch; 1976 Sep; 365(2-3):257-63. PubMed ID: 988566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence and bidirectional cation fluxes in red blood cells from spontaneously hypertensive rats.
    Harris AL; Guthe CC; van't Veer F; Bohr DF
    Hypertension; 1984; 6(1):42-8. PubMed ID: 6319280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Erythrocyte membrane permeability of monovalent cations in rats with spontaneous arterial hypertension].
    Khrustaleva RS; Gusev GP
    Kardiologiia; 1987 Aug; 27(8):65-8. PubMed ID: 3682580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats.
    Postnov YV; Orlov SN; Gulak PV; Shevchenko AS
    Clin Sci Mol Med Suppl; 1976 Dec; 3():169s-172s. PubMed ID: 1071599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte sodium ion transport system in DOC-salt, Goldblatt, and spontaneously hypertensive rats.
    Yokomatsu M; Fujito K; Numahata H; Koide H
    Scand J Clin Lab Invest; 1992 Oct; 52(6):497-506. PubMed ID: 1329186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte membrane transport in hypertensive humans and rats. Effect of sodium depletion and excess.
    Feig PU; Mitchell PP; Boylan JW
    Hypertension; 1985; 7(3 Pt 1):423-9. PubMed ID: 3997225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell membrane changes after in vivo acute Na+ load in normotensive and spontaneously hypertensive rats.
    De Mendonca M; Grichois ML; Dagher G; Aragon-Birloues I; Montenay-Garestier T; Devynck MA; Meyer P
    Clin Exp Hypertens A; 1984; 6(9):1559-74. PubMed ID: 6096049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered corticosteroid control of the erythrocyte sodium-potassium pump in the spontaneously hypertensive rat.
    Stern N; Beck FW; Sowers JR
    J Hypertens; 1983 Dec; 1(4):339-43. PubMed ID: 6099838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total Na(+)- and K(+)-fluxes in erythrocytes of spontaneously and one-kidney Goldblatt hypertensive rats.
    Knorr A
    Arch Int Pharmacodyn Ther; 1981 Sep; 253(1):148-53. PubMed ID: 7325752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats.
    De Mendonca M; Grichois ML; Garay RP; Sassard J; Ben-Ishay D; Meyer P
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4283-6. PubMed ID: 6254018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte membrane abnormalities in hypertension: a comparison between two animal models.
    Chan TC; Godin DV; Sutter MC
    Clin Exp Hypertens A; 1983; 5(5):691-719. PubMed ID: 6136351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of sodium-potassium adenosine triphosphatase in the regulation of membrane fluidity of erythrocytes in spontaneously hypertensive rats: an electron paramagnetic resonance investigation.
    Tsuda K; Nishio I; Masuyama Y
    Am J Hypertens; 1997 Dec; 10(12 Pt 1):1411-4. PubMed ID: 9443778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two-kidney, one clip, and spontaneously hypertensive rats. Role of hypokalemia and cell volume.
    Duhm J; Göbel BO; Beck FX
    Hypertension; 1983; 5(5):642-52. PubMed ID: 6311735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transport of univalent cations across the erythrocyte membrane of hypertensive rats of various ages].
    Gusev GP; Skul'skiĭ IA; Khrusmaleva RS
    Tsitologiia; 1988 Nov; 30(11):1318-23. PubMed ID: 2854318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte water content in spontaneously hypertensive rats and DOCA-salt hypertensive rats.
    Kawarabayashi T; Yasunari K; Kanayama Y; Takeuchi K; Takeda T
    Clin Exp Pharmacol Physiol; 1986; 13(11-12):783-90. PubMed ID: 3829446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of the structural-functional status of erythrocyte membranes in 3 strains of rats with spontaneous genetic hypertension].
    Orlov SN; Pokudin NI; Kotelevtsev IuV; Postnov IuV
    Kardiologiia; 1988 Jan; 28(1):57-63. PubMed ID: 3357298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes.
    McCarron DA; Lucas PA; Shneidman RJ; LaCour B; Drüeke T
    J Clin Invest; 1985 Sep; 76(3):1147-54. PubMed ID: 4044829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.