These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6648398)

  • 1. Steady and pulsatile flow studies on a trileaflet heart valve prosthesis.
    Woo YR; Williams FP; Yoganathan AP
    Scand J Thorac Cardiovasc Surg; 1983; 17(3):227-36. PubMed ID: 6648398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro fluid dynamic characteristics of the abiomed trileaflet heart valve prosthesis.
    Woo YR; Williams FP; Yoganathan AP
    J Biomech Eng; 1983 Nov; 105(4):338-45. PubMed ID: 6645442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bileaflet, tilting disc and porcine aortic valve substitutes: in vitro hydrodynamic characteristics.
    Yoganathan AP; Chaux A; Gray RJ; Woo YR; DeRobertis M; Williams FP; Matloff JM
    J Am Coll Cardiol; 1984 Feb; 3(2 Pt 1):313-20. PubMed ID: 6693619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in prosthetic heart valves: fluid mechanics of aortic valve designs.
    Yoganathan AP; Woo YR; Sung HW; Jones M
    J Biomater Appl; 1988 Apr; 2(4):579-614. PubMed ID: 2974076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro fluid dynamic characteristics of Ionescu-Shiley and Carpentier-Edwards tissue bioprostheses.
    Yoganathan AP; Woo YR; Williams FP; Stevenson DM; Franch RH; Harrison EC
    Artif Organs; 1983 Nov; 7(4):459-69. PubMed ID: 6651586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rest and exercise hemodynamics following aortic valve replacement. A comparison between 19 and 21 mm Ionescu-Shiley pericardial and Carpentier-Edwards porcine valves.
    Bove EL; Marvasti MA; Potts JL; Reger MJ; Zamora JL; Eich RH; Parker FB
    J Thorac Cardiovasc Surg; 1985 Nov; 90(5):750-5. PubMed ID: 4058047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position.
    Yoganathan AP; Woo YR; Sung HW; Williams FP; Franch RH; Jones M
    J Thorac Cardiovasc Surg; 1986 Aug; 92(2):198-209. PubMed ID: 3736078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity fields and turbulent stresses downstream of biological and mechanical aortic valve prostheses implanted in pigs.
    Hasenkam JM; Pedersen EM; Ostergaard JH; Nygaard H; Paulsen PK; Johannsen G; Schurizek BA
    Cardiovasc Res; 1988 Jul; 22(7):472-83. PubMed ID: 3252971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of prosthetic aortic valve design on the Doppler-catheter gradient correlation: an in vitro study of normal St. Jude, Medtronic-Hall, Starr-Edwards and Hancock valves.
    Baumgartner H; Khan S; DeRobertis M; Czer L; Maurer G
    J Am Coll Cardiol; 1992 Feb; 19(2):324-32. PubMed ID: 1531058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro flow dynamics of four prosthetic aortic valves: a comparative analysis.
    Hanle DD; Harrison EC; Yoganathan AP; Allen DT; Corcoran WH
    J Biomech; 1989; 22(6-7):597-607. PubMed ID: 2808443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro fluid dynamic characteristics of the Medtronic-Hall pivoting disc heart valve prosthesis.
    Yoganathan AP; Stevenson DM; Williams FP; Woo YR; Franch RH; Harrison EC
    Scand J Thorac Cardiovasc Surg; 1982; 16(3):235-43. PubMed ID: 6221405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the function of the Abiomed polyurethane heart valve for use in left ventricular assist devices.
    Leat ME; Fisher J
    J Biomed Eng; 1993 Nov; 15(6):516-20. PubMed ID: 8277758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves.
    Chandran KB; Fatemi R; Schoephoerster R; Wurzel D; Hansen G; Pantalos G; Yu LS; Kolff WJ
    Artif Organs; 1989 Apr; 13(2):148-54. PubMed ID: 2705886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses.
    Woo YR; Yoganathan AP
    Life Support Syst; 1985; 3(4):283-312. PubMed ID: 4068753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves--II. Results on five models.
    Stevenson DM; Yoganathan AP; Williams FP
    J Biomech; 1985; 18(12):909-26. PubMed ID: 4077859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo hemodynamics of prosthetic St. Jude Medical and Ionescu-Shiley heart valves analyzed by computer.
    Kawachi Y; Tokunaga K; Watanabe Y; Nose Y; Nakamura M
    Ann Thorac Surg; 1985 May; 39(5):456-61. PubMed ID: 3994447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An emergency physician's guide to prosthetic heart valves: identification and hemodynamic function.
    Harrison EC; Rashtian MY; Allen DT; Yoganathan AP; Rahimtoola SH
    Ann Emerg Med; 1988 Mar; 17(3):194-200. PubMed ID: 3345013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Reynolds shear stresses during pulsatile flow in the region of aortic valves.
    Walburn FJ; Sabbah HN; Stein PD
    Ann Biomed Eng; 1985; 13(1):17-23. PubMed ID: 4003870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo hemodynamic comparison of porcine and pericardial valves.
    Cosgrove DM; Lytle BW; Gill CC; Golding LA; Stewart RW; Loop FD; Williams GW
    J Thorac Cardiovasc Surg; 1985 Mar; 89(3):358-68. PubMed ID: 3974271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.