These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 665202)

  • 1. Skull distortion of bone conducted signals.
    Arlinger SD; Kylén P; Hellqvist H
    Acta Otolaryngol; 1978; 85(5-6):318-23. PubMed ID: 665202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone-conducted stimulation in electrocochleography.
    Arlinger SD; Kylén P
    Acta Otolaryngol; 1977; 84(5-6):377-84. PubMed ID: 920139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission pathways of vibratory stimulation as measured by subjective thresholds and distortion-product otoacoustic emissions.
    Watanabe T; Bertoli S; Probst R
    Ear Hear; 2008 Oct; 29(5):667-73. PubMed ID: 18596647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head.
    Ito T; Röösli C; Kim CJ; Sim JH; Huber AM; Probst R
    Audiol Neurootol; 2011; 16(1):12-22. PubMed ID: 20453499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission properties of bone conducted sound: measurements in cadaver heads.
    Stenfelt S; Goode RL
    J Acoust Soc Am; 2005 Oct; 118(4):2373-91. PubMed ID: 16266160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic method for calibration of audiometric bone vibrators. II. Harmonic distortion.
    Ginter SM; Margolis RH
    J Acoust Soc Am; 2013 Jul; 134(1):EL33-7. PubMed ID: 23862903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual cancellation between tones presented by air conduction, by bone conduction and by non-osseous (soft tissue) bone conduction.
    Chordekar S; Kriksunov L; Kishon-Rabin L; Adelman C; Sohmer H
    Hear Res; 2012 Jan; 283(1-2):180-4. PubMed ID: 22037489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission of bone-conducted sound in the human skull measured by cochlear vibrations.
    Eeg-Olofsson M; Stenfelt S; Tjellström A; Granström G
    Int J Audiol; 2008 Dec; 47(12):761-9. PubMed ID: 19085400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone Conduction Stimulation Applied Directly to the Otic Capsule: Intraoperative Assessment in Humans.
    Lachowska M; Niemczyk K; Kwacz M; Małkowska M; Sokołowski J
    Ear Hear; 2020; 41(4):974-982. PubMed ID: 31688317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-acoustic performance of the new bone vibrator Radioear B81: a comparison with the conventional Radioear B71.
    Jansson KJ; Håkansson B; Johannsen L; Tengstrand T
    Int J Audiol; 2015 May; 54(5):334-40. PubMed ID: 25519145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human skull vibratory patterns in audiometric and supersonic ranges.
    Dunlap SA; Lenhardt ML; Clarke AM
    Otolaryngol Head Neck Surg; 1988 Oct; 99(4):389-91. PubMed ID: 3148888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency audiometry. Accelerometric findings with electric bone-conduction audiometry.
    Löppönen H; Laitakari K; Sorri M
    Scand Audiol; 1991; 20(1):61-7. PubMed ID: 1842271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone conduction experiments in humans - a fluid pathway from bone to ear.
    Sohmer H; Freeman S; Geal-Dor M; Adelman C; Savion I
    Hear Res; 2000 Aug; 146(1-2):81-8. PubMed ID: 10913886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of human skull to bone-conducted sound in the audiometric-ultrasonic range.
    Cai Z; Richards DG; Lenhardt ML; Madsen AG
    Int Tinnitus J; 2002; 8(1):3-8. PubMed ID: 14763228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of bone conduction prosthesis in situ.
    Laitakari K; Löppönen H
    Rev Laryngol Otol Rhinol (Bord); 1995; 116(4):305-7. PubMed ID: 8927835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration.
    Dobrev I; Stenfelt S; Röösli C; Bolt L; Pfiffner F; Gerig R; Huber A; Sim JH
    Int J Audiol; 2016 Aug; 55(8):439-46. PubMed ID: 27139310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration characteristics of bone conducted sound in vitro.
    Stenfelt S; Håkansson B; Tjellström A
    J Acoust Soc Am; 2000 Jan; 107(1):422-31. PubMed ID: 10641651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations.
    Reinfeldt S; Stenfelt S; Good T; Håkansson B
    J Acoust Soc Am; 2007 Mar; 121(3):1576-87. PubMed ID: 17407895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.