These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6652070)

  • 21. Differential heat sensitivity of human creatine kinase isoenzymes.
    Morel-Deletraz F
    Enzyme; 1979; 24(4):277-9. PubMed ID: 488060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteolytic susceptibility of creatine kinase isozymes and arginine kinase.
    Ercan A; Grossman SH
    Biochem Biophys Res Commun; 2003 Jul; 306(4):1014-8. PubMed ID: 12821144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the AMP binding sites of rabbit phosphofructo-1-kinase isozymes B and C.
    Valaitis AP; Kwiatkowska D; Krishnaraj R; Kemp RG
    Biochim Biophys Acta; 1988 Oct; 956(3):232-42. PubMed ID: 2844270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creatine phosphokinase in Rana pipiens: expression in embryos, early larvae and adult tissues.
    Klemann SW; Pfohl RJ
    Comp Biochem Physiol B; 1982; 73(4):907-14. PubMed ID: 6983949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of cytoplasmic creatine kinase isozymes of Xenopus laevis.
    Robert J; Kobel HR
    Biochem Genet; 1988 Oct; 26(9-10):543-55. PubMed ID: 3242493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Properties of human creatine kinase isoenzymes].
    Malakhov VN; Tishchenko VA; Efron II; Chukhriĭ EA; Isachenkov VA
    Biokhimiia; 1977 Jul; 42(7):1221-31. PubMed ID: 20162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the stability of creatine kinase isozymes.
    Guo Z; Wang Z; Wang X
    Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isozyme profiles of lactic dehydrogenase and creatine phosphokinase in neonatal mouse hearts.
    Courtney KD; Ebron MT
    Biol Neonate; 1978; 34(3-4):203-8. PubMed ID: 737243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-domain lifetime fluorometry of double-labeled creatine kinase.
    Gregor M; Kubala M; Amler E; Mejsnar J
    Physiol Res; 2003; 52(5):579-85. PubMed ID: 14535833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodopsin-G-protein interactions monitored by resonance energy transfer.
    Borochov-Neori H; Montal M
    Biochemistry; 1989 Feb; 28(4):1711-8. PubMed ID: 2497769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association.
    Grossman SH
    Biochim Biophys Acta; 1994 Nov; 1209(1):19-23. PubMed ID: 7947978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes.
    Buckler DR; Haas E; Scheraga HA
    Biochemistry; 1995 Dec; 34(49):15965-78. PubMed ID: 8519753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The use of primate tissue homogenates for quality control in the creatine kinase-MB determination with inhibiting antibodies (author's transl)].
    Neumeier D; Siegele B; Glück B; Knedel M
    J Clin Chem Clin Biochem; 1977 May; 15(5):289-91. PubMed ID: 408459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of brain-type creatine kinase with its transition state analog: kinetics of inhibition and conformational changes.
    Grossman SH; Garcia-Rubio LH
    J Enzyme Inhib; 1987; 1(4):301-9. PubMed ID: 3150431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of MB creatine kinase isoform conversion in vitro and in vivo in dogs.
    Billadello JJ; Fontanet HL; Strauss AW; Abendschein DR
    J Clin Invest; 1989 May; 83(5):1637-43. PubMed ID: 2496146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disappearance and appearance of isoenzymes of creatine kinase, lactate dehydrogenase and aspartate aminotransferase in the myocardium undergoing infarction.
    Matsui Y; Hashimoto H; Tsukamoto H; Okumura K; Ito T; Ogawa K; Satake T
    Cardiovasc Res; 1989 Mar; 23(3):249-53. PubMed ID: 2590908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry.
    Cheung HC; Gonsoulin F; Garland F
    Biochim Biophys Acta; 1985 Nov; 832(1):52-62. PubMed ID: 2932161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation of creatine-kinase isoenzymes on ion-exchange mini-columns for diagnostic purposes.
    Chirulescu Z; Chiriloiu C; Suciu A
    Med Interne; 1981; 19(4):383-8. PubMed ID: 7336099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance energy transfer as a direct monitor of GTP-binding protein-effector interactions: activated alpha-transducin binding to the cGMP phosphodiesterase in the bovine phototransduction cascade.
    Erickson JW; Cerione RA
    Biochemistry; 1991 Jul; 30(29):7112-8. PubMed ID: 1713060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creatine kinase isozyme expression in embryonic chicken heart.
    Lamers WH; Geerts WJ; Moorman AF; Dottin RP
    Anat Embryol (Berl); 1989; 179(4):387-93. PubMed ID: 2735532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.