These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6652070)

  • 41. The catalytic activity and activation energy of creatine kinase isoenzymes.
    Hagelauer U; Faust U
    J Clin Chem Clin Biochem; 1982 Sep; 20(9):633-8. PubMed ID: 7142920
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Myocardial creatine kinase-MB concentration in normal and explanted human hearts and released from hearts of patients with acute myocardial infarction.
    van der Laarse A; Hollaar L; Kok SW; van den Eijnde S; Souverijn JH; Hoedemaeker PJ; Bruschke AV
    Clin Physiol Biochem; 1992; 9(1):11-7. PubMed ID: 1424434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The further heterogeneity of creatine kinase. Presence of isoenzymes of cathodic mobility in rat tissues.
    Sanders JL; Joung JI; Rochman H
    Biochim Biophys Acta; 1976 Jul; 438(2):407-11. PubMed ID: 952940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat.
    Bittl JA; DeLayre J; Ingwall JS
    Biochemistry; 1987 Sep; 26(19):6083-90. PubMed ID: 3689762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Separation and localization of the four cysteine-949 residues in human alpha 2-macroglobulin using fluorescence energy transfer.
    Gettins P; Beechem JM; Crews BC; Cunningham LW
    Biochemistry; 1990 Aug; 29(33):7747-53. PubMed ID: 1702992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Interaction of human creatine phosphokinase isoenzymes with rabbit antibodies and their Fab-fragments].
    Malakhov VN; Tishchenko VA; Isachenkov VA
    Biokhimiia; 1978 Dec; 43(12):2211-21. PubMed ID: 570426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit.
    Brosnan MJ; Raman SP; Chen L; Koretsky AP
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C151-60. PubMed ID: 8430764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural mapping of chloroplast coupling factor.
    Snyder B; Hammes GG
    Biochemistry; 1984 Nov; 23(24):5787-95. PubMed ID: 6240988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proximity of antibody binding sites studied by fluorescence energy transfer.
    Luedtke R; Owen CS; Karush F
    Biochemistry; 1980 Mar; 19(6):1182-92. PubMed ID: 7189409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene duplication events producing muscle (M) and brain (B) isoforms of cytoplasmic creatine kinase: cDNA and deduced amino acid sequences from two lower chordates.
    Graber NA; Ellington WR
    Mol Biol Evol; 2001 Jul; 18(7):1305-14. PubMed ID: 11420369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two tissue-specific isozymes of creatine kinase have closely matched amino acid sequences.
    Pickering L; Pang H; Biemann K; Munro H; Schimmel P
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2310-4. PubMed ID: 3857581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluorescence energy transfer between subfragment-1 and actin points in the rigor complex of actosubfragment-1.
    Takashi R
    Biochemistry; 1979 Nov; 18(23):5164-9. PubMed ID: 159071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A domain of membrane-bound blood coagulation factor Va is located far from the phospholipid surface. A fluorescence energy transfer measurement.
    Isaacs BS; Husten EJ; Esmon CT; Johnson AE
    Biochemistry; 1986 Aug; 25(17):4958-69. PubMed ID: 3768326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiomyocytes cultured in serum-free medium. Growth and creatine kinase activity.
    Kessler-Icekson G; Sperling O; Rotem C; Wasserman L
    Exp Cell Res; 1984 Nov; 155(1):113-20. PubMed ID: 6489453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer.
    Cardullo RA; Agrawal S; Flores C; Zamecnik PC; Wolf DE
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8790-4. PubMed ID: 3194390
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial relationship of the sigma subunit and the rifampicin binding site in RNA polymerase of Escherichia coli.
    Wu CW; Yarbrough LR; Wu FY; Hillel Z
    Biochemistry; 1976 May; 15(10):2097-104. PubMed ID: 776217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A medico-legal approach to the myocardial changes caused by transthoracic direct current countershock.
    Matsuda H; Seo Y; Takahama K
    Nihon Hoigaku Zasshi; 1997 Feb; 51(1):11-7. PubMed ID: 9078836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural mapping of Fc receptor bound immunoglobulin E: proximity to the membrane surface of the antibody combining site and another site in the Fab segments.
    Baird B; Holowka D
    Biochemistry; 1985 Oct; 24(22):6252-9. PubMed ID: 4084517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Antigenic properties of BB creatine kinases from various tissues in hens].
    Safronova TI; Ivanova SB; Lyzlova SN
    Zh Evol Biokhim Fiziol; 1988; 24(6):835-41. PubMed ID: 2469265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.