These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6652078)

  • 1. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1983 Dec; 725(3):425-33. PubMed ID: 6652078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes.
    Kauppinen R
    Biochim Biophys Acta; 1983 Oct; 725(1):131-7. PubMed ID: 6626538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool.
    Yu X; White LT; Alpert NM; Lewandowski ED
    Biochemistry; 1996 May; 35(21):6963-8. PubMed ID: 8639648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system.
    Sluse FE; Evens A; Dierks T; Duyckaerts C; Sluse-Goffart CM; Krämer R
    Biochim Biophys Acta; 1991 Jul; 1058(3):329-38. PubMed ID: 2065061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H445-52. PubMed ID: 8368347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of cellular redox potential as measured in a steady-state, cell-free system.
    Burat MK; Burat T; Davis-Van Thienen WI; Davis EJ
    Arch Biochem Biophys; 1984 Nov; 235(1):150-8. PubMed ID: 6238571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1982 Aug; 681(2):286-91. PubMed ID: 7115698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transport of L-cysteinesulfinate in rat liver mitochondria.
    Palmieri F; Stipani I; Iacobazzi V
    Biochim Biophys Acta; 1979 Aug; 555(3):531-46. PubMed ID: 486467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate and aspartate transport in rat brain mitochondria.
    Brand MD; Chappell JB
    Biochem J; 1974 May; 140(2):205-10. PubMed ID: 4375961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 15. Mitochondrial transmembrane ion distribution during anoxia.
    Aw TY; Andersson BS; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C356-61. PubMed ID: 3565556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the subcellular distribution of metabolites due to ethanol oxidation in the perfused rat liver.
    Soboll S; Heldt HW; Scholz R
    Hoppe Seylers Z Physiol Chem; 1981 Mar; 362(3):247-60. PubMed ID: 7227978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and mechanisms of glutamate transport across the mitochondrial membrane.
    Williamson JR; Hoek JB; Murphy E; Coll KE; Njogu RM
    Ann N Y Acad Sci; 1980; 341():593-608. PubMed ID: 6930843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.