These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 6652129)
1. [Water distribution around a protein molecule from data on spatial structure]. Shchegoleva TIu Biofizika; 1983; 28(6):937-43. PubMed ID: 6652129 [TBL] [Abstract][Full Text] [Related]
2. [Hydratation of the rubredoxin polypeptide chain from data on the spatial structure]. Chirgadze IuN; Shchegoleva TIu Mol Biol (Mosk); 1984; 18(4):994-1000. PubMed ID: 6504038 [TBL] [Abstract][Full Text] [Related]
3. A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution. Chatake T; Kurihara K; Tanaka I; Tsyba I; Bau R; Jenney FE; Adams MW; Niimura N Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1364-73. PubMed ID: 15272158 [TBL] [Abstract][Full Text] [Related]
4. The iron-sulfur environment in rubredoxin. Bunker B; Stern EA Biophys J; 1977 Sep; 19(3):253-64. PubMed ID: 890038 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: a molecular dynamics study. Swartz PD; Ichiye T Biochemistry; 1996 Oct; 35(43):13772-9. PubMed ID: 8901519 [TBL] [Abstract][Full Text] [Related]
6. Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Arosio D; Kwansa HE; Gering H; Piszczek G; Bucci E Biopolymers; 2002 Jan; 63(1):1-11. PubMed ID: 11754343 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB; Park NS; Ichiye T Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963 [TBL] [Abstract][Full Text] [Related]
8. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Nakasako M; Odaka M; Yohda M; Dohmae N; Takio K; Kamiya N; Endo I Biochemistry; 1999 Aug; 38(31):9887-98. PubMed ID: 10433695 [TBL] [Abstract][Full Text] [Related]
9. Large-scale networks of hydration water molecules around bovine beta-trypsin revealed by cryogenic X-ray crystal structure analysis. Nakasako M J Mol Biol; 1999 Jun; 289(3):547-64. PubMed ID: 10356328 [TBL] [Abstract][Full Text] [Related]
10. An analysis of molecular packing and chemical association in liquid water using quasichemical theory. Paliwal A; Asthagiri D; Pratt LR; Ashbaugh HS; Paulaitis ME J Chem Phys; 2006 Jun; 124(22):224502. PubMed ID: 16784293 [TBL] [Abstract][Full Text] [Related]
11. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations. Paschek D J Chem Phys; 2004 Jun; 120(22):10605-17. PubMed ID: 15268086 [TBL] [Abstract][Full Text] [Related]
12. Influence of protein flexibility on the redox potential of rubredoxin: energy minimization studies. Shenoy VS; Ichiye T Proteins; 1993 Oct; 17(2):152-60. PubMed ID: 8265563 [TBL] [Abstract][Full Text] [Related]
13. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Lee HJ; Basran J; Scrutton NS Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514 [TBL] [Abstract][Full Text] [Related]
14. The structure of rubredoxin at 1.2 A resolution. Watenpaugh KD; Sieker LC; Jensen LH J Mol Biol; 1979 Jul; 131(3):509-22. PubMed ID: 513127 [No Abstract] [Full Text] [Related]
15. Hydration in proteins observed by high-resolution neutron crystallography. Chatake T; Ostermann A; Kurihara K; Parak FG; Niimura N Proteins; 2003 Feb; 50(3):516-23. PubMed ID: 12557193 [TBL] [Abstract][Full Text] [Related]
16. Letter: The crystal and molecular structures of [(C6H5)4P]2Fe(S2C4O2)2 and [(C6H5)4P]2Fe(SC6H5)4, a structural analogue of reduced rubredoxin. Coucouvanis D; Swenson D; Baenziger NC; Holah DG; Kostikas A; Simopoulos A; Petrouleas V J Am Chem Soc; 1976 Sep; 98(18):5721-3. PubMed ID: 956577 [No Abstract] [Full Text] [Related]
17. Water penetration and escape in proteins. GarcĂa AE; Hummer G Proteins; 2000 Feb; 38(3):261-72. PubMed ID: 10713987 [TBL] [Abstract][Full Text] [Related]
18. Structure and dynamics of the hydration shells of the Al3+ ion. Bylaska EJ; Valiev M; Rustad JR; Weare JH J Chem Phys; 2007 Mar; 126(10):104505. PubMed ID: 17362073 [TBL] [Abstract][Full Text] [Related]
19. Theoretical studies of the oxidized and reduced states of a model for the active site of rubredoxin. Bair RA; Goddard WA J Am Chem Soc; 1977 May; 99(10):3505-7. PubMed ID: 853189 [No Abstract] [Full Text] [Related]
20. Water structure in a protein crystal: rubredoxin at 1.2 A resolution. Watenpaugh KD; Margulis TN; Sieker LC; Jensen LH J Mol Biol; 1978 Jun; 122(2):175-90. PubMed ID: 682189 [No Abstract] [Full Text] [Related] [Next] [New Search]