BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6654887)

  • 1. RNA splicing in Neurospora mitochondria. The large rRNA intron contains a noncoded, 5'-terminal guanosine residue.
    Garriga G; Lambowitz AM
    J Biol Chem; 1983 Dec; 258(24):14745-8. PubMed ID: 6654887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA splicing in neurospora mitochondria: self-splicing of a mitochondrial intron in vitro.
    Garriga G; Lambowitz AM
    Cell; 1984 Dec; 39(3 Pt 2):631-41. PubMed ID: 6096015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of recognition of the 5' splice site in self-splicing group I introns.
    Garriga G; Lambowitz AM; Inoue T; Cech TR
    Nature; 1986 Jul 3-9; 322(6074):86-9. PubMed ID: 3636598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions.
    Garriga G; Lambowitz AM
    Cell; 1986 Aug; 46(5):669-80. PubMed ID: 2427199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA splicing in Neurospora mitochondria. Characterization of new nuclear mutants with defects in splicing the mitochondrial large rRNA.
    Bertrand H; Bridge P; Collins RA; Garriga G; Lambowitz AM
    Cell; 1982 Jun; 29(2):517-26. PubMed ID: 7116448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA splicing in Neurospora mitochondria: nuclear mutants defective in both splicing and 3' end synthesis of the large rRNA.
    Garriga G; Bertrand H; Lambowitz AM
    Cell; 1984 Mar; 36(3):623-34. PubMed ID: 6230156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tetrahymena rRNA intron self-splices in E. coli: in vivo evidence for the importance of key base-paired regions of RNA for RNA enzyme function.
    Waring RB; Ray JA; Edwards SW; Scazzocchio C; Davies RW
    Cell; 1985 Feb; 40(2):371-80. PubMed ID: 3917861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic activity of the conserved core of a group I self-splicing intron.
    Szostak JW
    Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of the Neurospora mitochondrial large rRNA intron and construction of a mini-intron that shows protein-dependent splicing.
    Guo QB; Akins RA; Garriga G; Lambowitz AM
    J Biol Chem; 1991 Jan; 266(3):1809-19. PubMed ID: 1824845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intron within the large rRNA gene of N. crassa mitochondria: a long open reading frame and a consensus sequence possibly important in splicing.
    Burke JM; RajBhandary UL
    Cell; 1982 Dec; 31(3 Pt 2):509-20. PubMed ID: 6218884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA splicing in neurospora mitochondria: structure of the unspliced 35S precursor ribosomal RNA detected by psoralen cross-linking.
    Wollenzien PL; Cantor CR; Grant DM; Lambowitz AM
    Cell; 1983 Feb; 32(2):397-407. PubMed ID: 6825174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA splicing in Neurospora mitochondria. Defective splicing of mitochondrial mRNA precursors in the nuclear mutant cyt18-1.
    Collins RA; Lambowitz AM
    J Mol Biol; 1985 Aug; 184(3):413-28. PubMed ID: 2413216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of phage T4 td-encoded RNA is analogous to the eukaryotic group I splicing pathway.
    Ehrenman K; Pedersen-Lane J; West D; Herman R; Maley F; Belfort M
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):5875-9. PubMed ID: 3526343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence.
    Cech TR; Zaug AJ; Grabowski PJ
    Cell; 1981 Dec; 27(3 Pt 2):487-96. PubMed ID: 6101203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleic acid splicing in Neurospora Mitochondria: secondary structure of the 35S ribosomal precursor ribonucleic acid investigated by digestion with ribonuclease III and by electron microscopy.
    Grimm MF; Cole MD; Lambowitz AM
    Biochemistry; 1981 May; 20(10):2836-42. PubMed ID: 6264946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA.
    Bass BL; Cech TR
    Nature; 1984 Apr 26-May 2; 308(5962):820-6. PubMed ID: 6562377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in nuclear gene cyt-4 of Neurospora crassa result in pleiotropic defects in processing and splicing of mitochondrial RNAs.
    Dobinson KF; Henderson M; Kelley RL; Collins RA; Lambowitz AM
    Genetics; 1989 Sep; 123(1):97-108. PubMed ID: 2478417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.