BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6654896)

  • 1. Structure of human erythrocyte spectrin. II. The sequence of the alpha-I domain.
    Speicher DW; Davis G; Marchesi VT
    J Biol Chem; 1983 Dec; 258(24):14938-47. PubMed ID: 6654896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional features of the alpha-1 domain from human erythrocyte spectrin.
    Speicher DW
    Prog Clin Biol Res; 1984; 165():441-56. PubMed ID: 6504917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of human erythrocyte spectrin. I. Isolation of the alpha-I domain and its cyanogen bromide peptides.
    Speicher DW; Davis G; Yurchenco PD; Marchesi VT
    J Biol Chem; 1983 Dec; 258(24):14931-7. PubMed ID: 6654895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure of the brain alpha-spectrin.
    Wasenius VM; Saraste M; Salvén P; Erämaa M; Holm L; Lehto VP
    J Cell Biol; 1989 Jan; 108(1):79-93. PubMed ID: 2910879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site.
    Ursitti JA; Kotula L; DeSilva TM; Curtis PJ; Speicher DW
    J Biol Chem; 1996 Mar; 271(12):6636-44. PubMed ID: 8636080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin.
    Sahr KE; Laurila P; Kotula L; Scarpa AL; Coupal E; Leto TL; Linnenbach AJ; Winkelmann JC; Speicher DW; Marchesi VT
    J Biol Chem; 1990 Mar; 265(8):4434-43. PubMed ID: 1689726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site.
    Kotula L; DeSilva TM; Speicher DW; Curtis PJ
    J Biol Chem; 1993 Jul; 268(20):14788-93. PubMed ID: 8325856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins.
    Kennedy SP; Weed SA; Forget BG; Morrow JS
    J Biol Chem; 1994 Apr; 269(15):11400-8. PubMed ID: 8157672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2).
    Lombardo CR; Weed SA; Kennedy SP; Forget BG; Morrow JS
    J Biol Chem; 1994 Nov; 269(46):29212-9. PubMed ID: 7961888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin.
    Gallagher PG; Tse WT; Coetzer T; Lecomte MC; Garbarz M; Zarkowsky HS; Baruchel A; Ballas SK; Dhermy D; Palek J
    J Clin Invest; 1992 Mar; 89(3):892-8. PubMed ID: 1541680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptides with more than one 106-amino acid sequence motif are needed to mimic the structural stability of spectrin.
    Menhart N; Mitchell T; Lusitani D; Topouzian N; Fung LW
    J Biol Chem; 1996 Nov; 271(48):30410-6. PubMed ID: 8940005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte spectrin is comprised of many homologous triple helical segments.
    Speicher DW; Marchesi VT
    Nature; 1984 Sep 13-19; 311(5982):177-80. PubMed ID: 6472478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of all triple helical repeats in beta-spectrins reveals patterns of selective evolutionary conservation.
    Baines AJ
    Cell Mol Biol Lett; 2003; 8(1):195-214. PubMed ID: 12655374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin.
    Stabach PR; Morrow JS
    J Biol Chem; 2000 Jul; 275(28):21385-95. PubMed ID: 10764729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the spectrin-actin binding site of erythrocyte protein 4.1.
    Correas I; Speicher DW; Marchesi VT
    J Biol Chem; 1986 Oct; 261(28):13362-6. PubMed ID: 3531202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin.
    Kennedy SP; Warren SL; Forget BG; Morrow JS
    J Cell Biol; 1991 Oct; 115(1):267-77. PubMed ID: 1833409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of homologous repeated domains in alpha-actinin and spectrin.
    Davison MD; Baron MD; Critchley DR; Wootton JC
    Int J Biol Macromol; 1989 Apr; 11(2):81-90. PubMed ID: 2489070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the erythrocyte spectrin tetramerization region.
    Park S; Mehboob S; Luo BH; Hurtuk M; Johnson ME; Fung LW
    Cell Mol Biol Lett; 2001; 6(3):571-85. PubMed ID: 11598635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the spectrin gene to the assembly of the membrane skeleton.
    Wasenius VM; Saraste M; Lehto VP
    Int J Dev Biol; 1989 Mar; 33(1):49-54. PubMed ID: 2485701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-length sequence of the cDNA for human erythroid beta-spectrin.
    Winkelmann JC; Chang JG; Tse WT; Scarpa AL; Marchesi VT; Forget BG
    J Biol Chem; 1990 Jul; 265(20):11827-32. PubMed ID: 2195026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.