These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 6655088)

  • 1. An analysis of the time of origin of neurons in the entorhinal and subicular cortices of the cat.
    Wyss JM; Sripanidkulchai B; Hickey TL
    J Comp Neurol; 1983 Dec; 221(3):341-57. PubMed ID: 6655088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The time of origin of neurons in the hippocampal region of the rhesus monkey.
    Rakic P; Nowakowski RS
    J Comp Neurol; 1981 Feb; 196(1):99-128. PubMed ID: 7204668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat.
    Schlessinger AR; Cowan WM; Gottlieb DI
    J Comp Neurol; 1975 Jan; 159(2):149-75. PubMed ID: 1112911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat.
    Witter MP; Groenewegen HJ
    J Comp Neurol; 1984 Apr; 224(3):371-85. PubMed ID: 6715585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey.
    Nowakowski RS; Rakic P
    J Comp Neurol; 1981 Feb; 196(1):129-54. PubMed ID: 7204662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of Ammon's horn and the fascia dentata in the cat: a [3H]thymidine analysis.
    Wyss JM; Sripanidkulchai B
    Brain Res; 1985 Feb; 350(1-2):185-98. PubMed ID: 3986612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat.
    Shibata H
    J Comp Neurol; 1993 Nov; 337(3):431-45. PubMed ID: 7506716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation.
    Castelli L; Nigro MJ; Magistretti J
    Brain Res; 2007 Aug; 1163():44-55. PubMed ID: 17628510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture.
    Li D; Field PM; Raisman G
    Exp Neurol; 1996 Nov; 142(1):151-60. PubMed ID: 8912906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABABR1 receptor protein expression in human mesial temporal cortex: changes in temporal lobe epilepsy.
    Muñoz A; Arellano JI; DeFelipe J
    J Comp Neurol; 2002 Jul; 449(2):166-79. PubMed ID: 12115687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradients of cellular maturation and synaptogenesis in the superior colliculus of the fetal rhesus monkey.
    Cooper ML; Rakic P
    J Comp Neurol; 1983 Apr; 215(2):165-86. PubMed ID: 6853771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin.
    Tamamaki N; Nojyo Y
    Hippocampus; 1993 Oct; 3(4):471-80. PubMed ID: 8269038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenetic gradients in the superior and inferior colliculi of the rhesus monkey.
    Cooper ML; Rakic P
    J Comp Neurol; 1981 Nov; 202(3):309-34. PubMed ID: 7298901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells.
    Ruth RE; Collier TJ; Routtenberg A
    J Comp Neurol; 1982 Jul; 209(1):69-78. PubMed ID: 7119174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus.
    Dolorfo CL; Amaral DG
    J Comp Neurol; 1998 Aug; 398(1):25-48. PubMed ID: 9703026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The commissural connections of the monkey hippocampal formation.
    Amaral DG; Insausti R; Cowan WM
    J Comp Neurol; 1984 Apr; 224(3):307-36. PubMed ID: 6715582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of calbindin D-28k in the entorhinal, perirhinal, and parahippocampal cortices of the macaque monkey.
    Suzuki WA; Porteros A
    J Comp Neurol; 2002 Sep; 451(4):392-412. PubMed ID: 12210132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.