These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6655202)

  • 21. The relation between excitation and adaptation within the rod's outer segment.
    Conner JD
    Neurosci Lett; 1982 Jun; 30(3):245-50. PubMed ID: 6810239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical probes of intradiskal processes in rod photoreceptors. I: Light-scattering study of ATP-dependent dark reactions.
    Uhl R; Zellmann-Kraska R; Desel H
    J Photochem Photobiol B; 1989 Aug; 3(4):529-48. PubMed ID: 2529360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conductance changes produced by light in rod outer segments.
    Falk G; Fatt P
    J Physiol; 1968 Oct; 198(3):647-99. PubMed ID: 5685293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two components of electrical dark noise in toad retinal rod outer segments.
    Baylor DA; Matthews G; Yau KW
    J Physiol; 1980 Dec; 309():591-621. PubMed ID: 6788941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-second turnover of transducin GTPase in bovine rod outer segments. A light scattering study.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Jul; 234(1):44-8. PubMed ID: 2839365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light- and nucleotide-dependent binding of phosphodiesterase to rod disk membranes: correlation with light-scattering changes and vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1986 May; 25(9):2335-41. PubMed ID: 3013302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectric signals generated by bovine rod outer segment disk membranes attached to a lecithin bilayer.
    Bauer PJ; Bamberg E; Fahr A
    Biophys J; 1984 Jul; 46(1):111-6. PubMed ID: 6743754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced axial and radial shrinkage effects and changes of the refractive index in isolated bovine rod outer segments and disc vesicles: physical analysis of near-infrared scattering changes.
    Hofmann KP; Schleicher A; Emeis D; Reichert J
    Biophys Struct Mech; 1981; 8(1-2):67-93. PubMed ID: 7326356
    [No Abstract]   [Full Text] [Related]  

  • 29. Mg2+-ATP induces filament growth from retinal rod outer segments with disrupted plasma membranes.
    Parker KR; Schaechter LE; Lewis JW; Zeman KL; Kliger DS; Dratz EA
    FEBS Lett; 1987 Jan; 211(1):35-40. PubMed ID: 3492394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of volatile anesthetics on light-induced proton uptake of rhodopsin in bovine rod outer segment disk membrane.
    Mashimo T; Tashiro C; Yoshiya I
    Anesthesiology; 1984 Oct; 61(4):439-43. PubMed ID: 6091504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of light on Na-Ca exchange in rod outer segments in frog.
    Salceda R
    Neurosci Lett; 1985 Mar; 55(1):55-60. PubMed ID: 2581188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longitudinal spread of adaptation in the rods of the frog's retina.
    Hemilä S; Reuter T
    J Physiol; 1981 Jan; 310():501-28. PubMed ID: 6971931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and properties of rapid calcium release from binding sites in isolated rod outer segments upon photoexcitation of rhodopsin.
    Kaupp UB; Junge W
    Methods Enzymol; 1982; 81():569-76. PubMed ID: 7098896
    [No Abstract]   [Full Text] [Related]  

  • 34. Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments.
    Zuckerman R; Schmidt GJ; Dacko SM
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6414-8. PubMed ID: 6983071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Self-screening" of rhodopsin in rod outer segments.
    Alpern M; Fulton AB; Baker BN
    Vision Res; 1987; 27(9):1459-70. PubMed ID: 3445480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. cGMP- and phosphodiesterase-dependent light-scattering changes in rod disk membrane vesicles: relationship to disk vesicle-disk vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1985 Sep; 24(20):5685-92. PubMed ID: 3000435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-protein-effector coupling: a real-time light-scattering assay for transducin-phosphodiesterase interaction.
    Heck M; Hofmann KP
    Biochemistry; 1993 Aug; 32(32):8220-7. PubMed ID: 8394130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes.
    Kühn H; Bennett N; Michel-Villaz M; Chabre M
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6873-7. PubMed ID: 6273893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D; Hofmann KP
    FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.