These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 6655578)
1. Kinetics of the sodium/beta-methyl-D-glucoside co-transport system in the guinea-pig small intestine. Robinson JW; Van Melle G J Physiol; 1983 Nov; 344():177-87. PubMed ID: 6655578 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside. Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668 [TBL] [Abstract][Full Text] [Related]
3. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes. Hsu BY; Marshall CM; Corcoran SM; Segal S Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. 1. Phenylalanine fluxes. Sepúlveda FV; Robinson JW J Physiol (Paris); 1978 Dec; 74(6):569-74. PubMed ID: 745139 [TBL] [Abstract][Full Text] [Related]
5. A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush-border membrane. Alvarado F; Robinson JW J Physiol; 1979 Oct; 295():457-75. PubMed ID: 521961 [TBL] [Abstract][Full Text] [Related]
6. Lack of effect of intracellular sodium on phenylalanine and beta-methyl-glucoside influx into the guinea-pig enterocyte. Buclon M; Robinson JW; Sepúlveda FV J Physiol (Paris); 1979; 75(5):571-9. PubMed ID: 533874 [No Abstract] [Full Text] [Related]
7. Relation between sodium-coupled amino acid and sugar transport and sodium/potassium pump activity in isolated intestinal epithelial cells. Sepúlveda FV; Burton KA; Brown PD J Cell Physiol; 1982 Jun; 111(3):303-8. PubMed ID: 6284771 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of harmaline and ouabain on intestinal sodium, phenylalanine and beta-methyl-glucoside transport. Sepúlveda FV; Buclon M; Robinson JW Naunyn Schmiedebergs Arch Pharmacol; 1976 Dec; 295(3):231-6. PubMed ID: 138095 [TBL] [Abstract][Full Text] [Related]
9. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine. Restrepo D; Kimmich GA J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884 [TBL] [Abstract][Full Text] [Related]
10. Transport of 3-O-methyl D-glucose and beta-methyl D-glucoside by rabbit ileum. Holman GD; Naftalin RJ Biochim Biophys Acta; 1976 May; 433(3):597-614. PubMed ID: 1276193 [TBL] [Abstract][Full Text] [Related]
11. Studies on amino acid inhibition of monosaccharide exit from anuran small intestinal epithelium. Boyd CA J Physiol; 1979 Sep; 294():195-210. PubMed ID: 512942 [TBL] [Abstract][Full Text] [Related]
12. Effects of dibutyryl cyclic AMP on the transport of alpha-methyl-D-glucoside and alpha-aminoisobutyric acid in separated tubules and brush border membranes from rabbit kidney. Kippen I; Hirayama B; Klinenberg JR; Wright EM Biochim Biophys Acta; 1979 Nov; 558(1):126-35. PubMed ID: 227458 [TBL] [Abstract][Full Text] [Related]
13. Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the small intestine. Boyd CA; Parsons DS J Physiol; 1978 Jan; 274():17-36. PubMed ID: 304890 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the co-transport of sodium and phenylalanine in the guinea-pig samll intestine. III - Influence of harmaline on sodium and phenylalanine fluxes. Sepúlveda EV; Robinson JW J Physiol (Paris); 1978 Dec; 74(6):585-90. PubMed ID: 745141 [TBL] [Abstract][Full Text] [Related]
15. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. Kimmich GA; Randles J J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580 [TBL] [Abstract][Full Text] [Related]
16. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+. Kimmich GA; Randles J Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623 [TBL] [Abstract][Full Text] [Related]
17. Transport of sodium, water, 3-O-methyl-glucose and L-phenylalanine in vitro in biotin-deficient rats intestine. Petrelli F; Coderoni S; Moretti P; Paparelli M Experientia; 1977 Sep; 33(9):1189-90. PubMed ID: 891871 [TBL] [Abstract][Full Text] [Related]
18. Sugar absorption by mouse small intestine. Herzberg GR; Howland JL Comp Biochem Physiol A Comp Physiol; 1974 Apr; 47(4):1191-8. PubMed ID: 4141945 [No Abstract] [Full Text] [Related]
19. Ontogenetic and regional changes in alpha-methyl-D-glucoside and L-proline intestinal transport in guinea pig. Juan ME; Turmo MC; Planas JM Am J Physiol; 1998 Sep; 275(3):R897-904. PubMed ID: 9728089 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. II. Sodium fluxes and flux ratios. Sepúlveda FV; Robinson JW J Physiol (Paris); 1978 Dec; 74(6):575-83. PubMed ID: 745140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]