These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6656783)

  • 41. Effect of cyclo(Leu-Gly) on cyclic GMP-phosphodiesterase activity changes associated with development of tolerance to morphine-induced antinociception, catalepsy, respiratory depression and mydriasis.
    Burton CK; Ho IK; Hoskins B
    J Pharmacol Exp Ther; 1991 Sep; 258(3):871-6. PubMed ID: 1653844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differentiation by ascorbic acid of dopamine agonist and antagonist binding sites in striatum.
    Kayaalp SO; Neff NH
    Life Sci; 1980 Jun; 26(22):1837-41. PubMed ID: 7401904
    [No Abstract]   [Full Text] [Related]  

  • 43. Antagonism of dopamine supersensitivity by estrogen: neurochemical studies in an animal model of tardive dyskinesia.
    Gordon JH; Diamond BI
    Biol Psychiatry; 1981 Apr; 16(4):365-71. PubMed ID: 7194695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SL76002 - effect on gamma-aminobutyric acid and dopamine in animals treated chronically with haloperidol.
    Rastogi SK; Rastogi RB; Singhal RL; Lapierre YD
    Neuropsychobiology; 1983; 9(4):211-4. PubMed ID: 6646392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic haloperidol does not alter agonist affinity for dopamine receptors in vitro.
    Meller E; Bohmaker K; Goldstein M; Schweitzer JW; Friedhoff AJ
    Eur J Pharmacol; 1985 Mar; 109(3):389-94. PubMed ID: 3157587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of tolerance to the pharmacological effects of human beta-endorphin by prolyl-leucyl-glycinamide and cyclo(leucylglycine) in the rat.
    Bhargava HN
    J Pharmacol Exp Ther; 1981 Aug; 218(2):404-8. PubMed ID: 6114170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paradoxical response to dopamine agonists in tardive dyskinesia.
    Carroll BJ; Curtis GC; Kokmen E
    Am J Psychiatry; 1977 Jul; 134(7):785-9. PubMed ID: 17308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol.
    Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM
    Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid.
    Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA
    Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hypothalamic peptide hormone, prolyl-leucyl-glycinamide and analog, inhibit tolerance to the analgesic and locomotor depressant but not to the locomotor stimulant effects of morphine in the mouse.
    Bhargava HN
    Neuropharmacology; 1982 Mar; 21(3):227-33. PubMed ID: 6122186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Factors contributing to the up regulation of dopaminergic receptors by chronic haloperidol.
    Schweitzer JW; Schwartz R; Friedhoff AJ
    Res Commun Chem Pathol Pharmacol; 1982 Oct; 38(1):21-30. PubMed ID: 7146618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lithium interferes with reserpine-induced dopamine depletion.
    Reches A; Hassan MN; Jackson V; Fahn S
    Ann Neurol; 1983 Jun; 13(6):671-3. PubMed ID: 6410976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cannabidiol prevents haloperidol-induced vacuos chewing movements and inflammatory changes in mice via PPARγ receptors.
    Sonego AB; Prado DS; Vale GT; Sepulveda-Diaz JE; Cunha TM; Tirapelli CR; Del Bel EA; Raisman-Vozari R; Guimarães FS
    Brain Behav Immun; 2018 Nov; 74():241-251. PubMed ID: 30217539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of chronic haloperidol, thioridazine and zotepine treatment on apomorphine elicited stereotypic behavior and 3H-spiroperidol binding sites in the striatum of the rat.
    Lai HC; Carino MA; Horita A
    Proc West Pharmacol Soc; 1981; 24():5-6. PubMed ID: 6114496
    [No Abstract]   [Full Text] [Related]  

  • 55. Bioactive cyclic dipeptides.
    Prasad C
    Peptides; 1995; 16(1):151-64. PubMed ID: 7716068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats.
    Rupniak NM; Kilpatrick G; Hall MD; Jenner P; Marsden CD
    Psychopharmacology (Berl); 1984; 84(4):512-9. PubMed ID: 6441952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2003; 119(2):547-55. PubMed ID: 12770567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia.
    Singh A; Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2003 Sep; 477(2):87-94. PubMed ID: 14519411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Receptor supersensitivity: relationships to cerebral anatomy and histopathology of schizophrenia.
    Stevens JR
    Biol Psychiatry; 1981 Dec; 16(12):1119-22. PubMed ID: 7349624
    [No Abstract]   [Full Text] [Related]  

  • 60. Metoclopramide and haloperidol in tardive dyskinesia.
    Bateman DN; Dutta DK; McClelland HA; Rawlins MD
    Br J Psychiatry; 1979 Dec; 135():505-8. PubMed ID: 43755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.