These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 665786)

  • 1. Reduced reflow and diminished uptake of 86Rb after temporary coronary occlusion.
    Fukuyama T; Nakamura M; Nakagaki O; Matsuguchi H; Mitsutake A; Kikuchi Y; Kuroiwa A
    Am J Physiol; 1978 Jun; 234(6):H724-9. PubMed ID: 665786
    [No Abstract]   [Full Text] [Related]  

  • 2. Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator.
    Friedman JJ
    Am J Physiol; 1968 Mar; 214(3):488-93. PubMed ID: 5638980
    [No Abstract]   [Full Text] [Related]  

  • 3. Single-passage extraction of 86Rb from the circulation of skeletal muscle.
    Friedman JJ
    Am J Physiol; 1969 Mar; 216(3):460-6. PubMed ID: 4885442
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantitation of collateral and ischemic flows with microspheres and diffusible indicator.
    Cohen MV
    Am J Physiol; 1978 Apr; 234(4):H487-95. PubMed ID: 645887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depression of the effective to total coronary blood flow ratio as an index in ischemic heart disease.
    Sharma GP; Mymin D; Barwinsky J
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():693-705. PubMed ID: 4806672
    [No Abstract]   [Full Text] [Related]  

  • 6. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia.
    Shepherd AP
    Am J Physiol; 1978 Mar; 234(3):E248-51. PubMed ID: 629339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of 86Rb and microsphere estimates of left ventricular bloodflow distribution.
    Becker L; Ferreira R; Thomas M
    J Nucl Med; 1974 Nov; 15(11):969-73. PubMed ID: 4417866
    [No Abstract]   [Full Text] [Related]  

  • 8. [Comparison of regional myocardial perfusion determined by ionic 86Rb to that determined by microsphere in the ischemic dog hearts (author's transl)].
    Fukuyama T
    Fukuoka Igaku Zasshi; 1977 Jun; 68(6):295-311. PubMed ID: 914226
    [No Abstract]   [Full Text] [Related]  

  • 9. Discrepancy between microsphere and diffusible tracer estimates of perfusion to ischemic myocardium.
    Yoshida S; Akizuki S; Gowski D; Downey JM
    Am J Physiol; 1985 Aug; 249(2 Pt 2):H255-64. PubMed ID: 3895981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The "no-reflow" phenomenon after temporary coronary occlusion in the dog.
    Kloner RA; Ganote CE; Jennings RB
    J Clin Invest; 1974 Dec; 54(6):1496-508. PubMed ID: 4140198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of 14C-lignocaine and blood flow to canine organs after coronary occlusion: a physical separation technique to measure drug concentration and microsphere blood flow in the same tissue sample.
    Weintraub WS; Halgash DA; Patterson RE
    Cardiovasc Res; 1982 Jun; 16(6):331-8. PubMed ID: 7105099
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs.
    Goldstein RA
    J Clin Invest; 1985 Apr; 75(4):1131-7. PubMed ID: 3988934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of 85Sr-microspheres, 86Rb and 125I-antipyrine as indicators of regional blood flow in laboratory rats].
    Kapitola J; Jahoda I; Kobos L; Vilimovská D
    Cesk Fysiol; 1986; 35(6):509-13. PubMed ID: 3802232
    [No Abstract]   [Full Text] [Related]  

  • 14. Myocardial blood flow as measured by fractional uptake of rubidium-84 and microspheres.
    Knoebel SB; Lowe DK; Lovelace DE; Friedman JJ
    J Nucl Med; 1978 Sep; 19(9):1020-6. PubMed ID: 690702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reversibility of acute ischemic injury to the myocardium by restoration of coronary flow.
    O'Brien CM; Carroll M; O'Rourke PT; Rhodes EL; Gago O; Kirsh MM; Morris JD; Sloan HE
    J Thorac Cardiovasc Surg; 1972 Dec; 64(6):840-6. PubMed ID: 4344172
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of hyperoxia on regional blood flow after coronary occlusion in awake dogs.
    Rivas F; Rembert JC; Bache RJ; Cobb FR; Greenfield JC
    Am J Physiol; 1980 Feb; 238(2):H244-8. PubMed ID: 7361921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of microspheres and 86Rb+ as tracers of the distribution of cardiac output in rats indicates invalidity of 86Rb+-based measurements.
    Foster DO; Frydman ML
    Can J Physiol Pharmacol; 1978 Feb; 56(1):97-109. PubMed ID: 638864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the 86Rb-uptake of heterotopic heart transplants.
    Török B; Röth E; Tóth I; Szmolenszky T; Temes G
    Acta Chir Acad Sci Hung; 1974; 15(1):95-101. PubMed ID: 4604131
    [No Abstract]   [Full Text] [Related]  

  • 19. The measurement of blood perfusion in experimental tumors by uptake of 86Rb.
    Zanelli GD; Fowler JF
    Cancer Res; 1974 Jun; 34(6):1451-6. PubMed ID: 4826511
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of some pathophysiological factors on radioisotope evaluation of regional myocardial ischaemia.
    Kasalicky J; Fabián J; Belán A
    Cor Vasa; 1981; 23(6):447-56. PubMed ID: 7333104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.