These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6658907)

  • 1. Rapid, transient drop in brain glucose after intravenous phloretin or 3-0-methyl-D-glucose.
    Oldendorf WH; Crane PD; Lawner PM; Braun LD
    Stroke; 1983; 14(3):388-93. PubMed ID: 6658907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretreatment with 3-O-methyl-D-glucose or 2-deoxy-D-glucose attenuates the post-mortem rise in rat brain lactate.
    Miller LP; Villeneuve JB; Oldendorf WH
    Neurochem Res; 1986 Apr; 11(4):489-95. PubMed ID: 3724958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pharmacological doses of 3-0-methyl-D-glucose and 2-deoxy-D-glucose on rat brain glucose and lactate.
    Miller LP; Villeneuve JB; Braun LD; Oldendorf WH
    Stroke; 1986; 17(5):957-61. PubMed ID: 3764967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic stability of 3-O-methyl-D-glucose in brain and other tissues.
    Jay TM; Dienel GA; Cruz NF; Mori K; Nelson T; Sokoloff L
    J Neurochem; 1990 Sep; 55(3):989-1000. PubMed ID: 2200849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective effect of glucose, but not 3-O-methyl glucose, against alloxan-induced diabetes depends upon the route of hexose administration.
    Jansson L; Sandler S
    Arch Int Pharmacodyn Ther; 1988; 293():257-64. PubMed ID: 3048222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal sugar transport in experimental diabetes.
    Csáky TZ; Fischer E
    Diabetes; 1981 Jul; 30(7):568-74. PubMed ID: 6454600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transport and utilization in the human brain: model using carbon-11 methylglucose and positron emission tomography.
    Feinendegen LE; Herzog H; Wieler H; Patton DD; Schmid A
    J Nucl Med; 1986 Dec; 27(12):1867-77. PubMed ID: 3491192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose.
    Nakanishi H; Cruz NF; Adachi K; Sokoloff L; Dienel GA
    J Cereb Blood Flow Metab; 1996 May; 16(3):439-49. PubMed ID: 8621748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated transfer of glucose from blood into perilymph in the rat cochlea.
    Ferrary E; Sterkers O; Saumon G; Tran Ba Huy P; Amiel C
    Am J Physiol; 1987 Jul; 253(1 Pt 2):F59-65. PubMed ID: 3111276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain glucose levels in portacaval-shunted rats with chronic, moderate hyperammonemia: implications for determination of local cerebral glucose utilization.
    Cruz NF; Dienel GA
    J Cereb Blood Flow Metab; 1994 Jan; 14(1):113-24. PubMed ID: 8263046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3-O-methyl-D-glucose and positron emission tomography.
    Brooks DJ; Gibbs JS; Sharp P; Herold S; Turton DR; Luthra SK; Kohner EM; Bloom SR; Jones T
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):240-4. PubMed ID: 3485643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1986 Mar; 885(3):335-44. PubMed ID: 3511975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo determination of the kinetic parameters of glucose transport in the human brain using 11C-methyl-D-glucose (CMG) and dynamic positron emission tomography (dPET).
    Vyska K; Magloire JR; Freundlieb C; Höck A; Becker V; Schmid A; Feinendegen LE; Kloster G; Stöcklin G; Schuier FJ
    Eur J Nucl Med; 1985; 11(4):97-106. PubMed ID: 3876936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-O-methyl-D-glucose uptake in isolated rat hepatocytes. Effects of dexamethasone.
    Madar Z; Felig P
    Mol Pharmacol; 1983 Jan; 23(1):141-5. PubMed ID: 6865898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of cerebral glucose utilization using washout after carotid injection in the rat.
    Oldendorf WH; Pardridge WM; Braun LD; Crane PD
    J Neurochem; 1982 May; 38(5):1413-8. PubMed ID: 7062059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studied using [11C]3-O-methyl-D-glucose and positron emission tomography.
    Brooks DJ; Beaney RP; Lammertsma AA; Herold S; Turton DR; Luthra SK; Frackowiak RS; Thomas DG; Marshall J; Jones T
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):230-9. PubMed ID: 3007547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.