These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6660050)

  • 21. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot.
    McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL
    Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of geckos running vertically.
    Autumn K; Hsieh ST; Dudek DM; Chen J; Chitaphan C; Full RJ
    J Exp Biol; 2006 Jan; 209(Pt 2):260-72. PubMed ID: 16391348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematic differences between the distal portions of the forelimbs and hind limbs of horses at the trot.
    Back W; Schamhardt HC; Hartman W; Barneveld A
    Am J Vet Res; 1995 Nov; 56(11):1522-8. PubMed ID: 8585667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearing the F-Scan mobile in-shoe pressure measurement system alters gait characteristics during running.
    Kong PW; De Heer H
    Gait Posture; 2009 Jan; 29(1):143-5. PubMed ID: 18621533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates.
    Nyakatura JA; Fischer MS; Schmidt M
    Am J Phys Anthropol; 2008 Jan; 135(1):13-26. PubMed ID: 17786994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of subject stance time and velocity on ground reaction forces in clinically normal greyhounds at the trot.
    McLaughlin RM; Roush JK
    Am J Vet Res; 1994 Dec; 55(12):1666-71. PubMed ID: 7887508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis.
    Hamilton L; Franklin RJ; Jeffery ND
    BMC Neurosci; 2007 Sep; 8():77. PubMed ID: 17877823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A relationship between gait and breakdown in the horse.
    Pratt GW; O'Connor JT
    Am J Vet Res; 1978 Feb; 39(2):249-53. PubMed ID: 629458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ground reaction forces in horses trotting up an incline and on the level over a range of speeds.
    Dutto DJ; Hoyt DF; Cogger EA; Wickler SJ
    J Exp Biol; 2004 Sep; 207(Pt 20):3507-14. PubMed ID: 15339946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces.
    Schmidt M
    Am J Phys Anthropol; 2005 Oct; 128(2):359-70. PubMed ID: 15838834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hindlimb claudication reflects impaired nitric oxide-dependent revascularization after ischemia.
    Luque Contreras D; Jiménez Estrada I; Martínez Fong D; Segura B; Guadarrama JC; Paniagua Sierra R; Vargas Robles H; Rios A; Escalante B
    Vascul Pharmacol; 2007 Jan; 46(1):10-5. PubMed ID: 17011243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of induced hindlimb lameness on thoracolumbar kinematics during treadmill locomotion.
    Gomez Alvarez CB; Bobbert MF; Lamers L; Johnston C; Back W; van Weeren PR
    Equine Vet J; 2008 Mar; 40(2):147-52. PubMed ID: 18089465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What are the relations between mechanics, gait parameters, and energetics in terrestrial locomotion?
    Hoyt DF; Wickler SJ; Dutto DJ; Catterfeld GE; Johnsen D
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):912-22. PubMed ID: 17029281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function of the extrinsic hindlimb muscles in trotting dogs.
    Schilling N; Fischbein T; Yang EP; Carrier DR
    J Exp Biol; 2009 Apr; 212(Pt 7):1036-52. PubMed ID: 19282501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stride length and its determinants in humans, early hominids, primates, and mammals.
    Reynolds TR
    Am J Phys Anthropol; 1987 Jan; 72(1):101-15. PubMed ID: 3103457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed.
    Maes LD; Herbin M; Hackert R; Bels VL; Abourachid A
    J Exp Biol; 2008 Jan; 211(Pt 1):138-49. PubMed ID: 18083742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-term habituation of equine limb kinematics to tactile stimulation of the coronet.
    Clayton HM; White AD; Kaiser LJ; Nauwelaerts S; Lavagnino M; Stubbs NC
    Vet Comp Orthop Traumatol; 2008; 21(3):211-4. PubMed ID: 18536846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ground reaction force profiles from force platform gait analyses of clinically normal mesomorphic dogs at the trot.
    Rumph PF; Lander JE; Kincaid SA; Baird DK; Kammermann JR; Visco DM
    Am J Vet Res; 1994 Jun; 55(6):756-61. PubMed ID: 7944010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.