BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 6661202)

  • 1. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD; Wolowyk MW; Jones SM; Ellory JC
    Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA; Ellory JC; Young JD
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes.
    Young JD; Mason DK; Fincham DA
    J Biol Chem; 1988 Jan; 263(1):140-3. PubMed ID: 3121605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA; Mason DK; Paterson JY; Young JD
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA; Mason DK; Young JD
    Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation?
    Vadgama JV; Christensen HN
    J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in alanine and glutamine transport during rat red blood cell maturation.
    Felipe A; Viñas O; Remesar X
    Biosci Rep; 1992 Feb; 12(1):47-56. PubMed ID: 1643275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid transport by resealed ghosts from pigeon erythrocytes.
    Wheeler KP
    Biochem J; 1982 Mar; 202(3):613-21. PubMed ID: 7092835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid transport in human and in sheep erythrocytes.
    Young JD; Jones SE; Ellory JC
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-alanine uptake by frog (Rana esculenta) red blood cells.
    Gallardo MA; Albi JL; Esteve M; Sánchez J
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):631-5. PubMed ID: 9406440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution studies of amino acid transport system L in rat erythrocytes.
    Yao SY; George R; Young JD
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):655-60. PubMed ID: 8317996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site.
    Van Winkle LJ; Campione AL; Gorman JM
    Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of amino acid transport during erythroid cell differentiation.
    Vadgama JV; Castro M; Christensen HN
    J Biol Chem; 1987 Sep; 262(27):13273-84. PubMed ID: 3654612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of membrane function: transport of amino acid by rat erythroid cells.
    Wise WC
    J Cell Physiol; 1975 Dec; 87(2):199-201. PubMed ID: 1240104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breed and species comparison of amino acid transport variation in equine erythrocytes.
    Fincham DA; Young JD; Mason DK; Collins EA; Snow DH
    Res Vet Sci; 1985 May; 38(3):346-51. PubMed ID: 4012037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.