These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6661207)

  • 21. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of citrate oxidation by percoll-purified mitochondria from potato tuber.
    Journet EP; Douce R
    Plant Physiol; 1983 Jul; 72(3):802-8. PubMed ID: 16663088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato.
    Millar AH; Hill SA; Leaver CJ
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):327-34. PubMed ID: 10510296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles.
    Moore AL; Bonner WD
    Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate.
    Hansford RG; Castro F
    Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition and labelling of the mitochondrial 2-oxoglutarate carrier by eosin-5-maleimide.
    Zara V; Palmieri F
    FEBS Lett; 1988 Aug; 236(2):493-6. PubMed ID: 2457517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of hyperoxia on superoxide production by lung submitochondrial particles.
    Turrens JF; Freeman BA; Levitt JG; Crapo JD
    Arch Biochem Biophys; 1982 Sep; 217(2):401-10. PubMed ID: 6291460
    [No Abstract]   [Full Text] [Related]  

  • 30. [Induction of hydrogen ion transport in mitochondrial membranes].
    Sharyshev AA; Novogorodov SA; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(1):52-7. PubMed ID: 7066402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.
    Grivennikova VG; Serebryanaya DV; Isakova EP; Belozerskaya TA; Vinogradov AD
    Biochem J; 2003 Feb; 369(Pt 3):619-26. PubMed ID: 12379145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases.
    de Oliveira HC; Wulff A; Saviani EE; Salgado I
    Biochim Biophys Acta; 2008 May; 1777(5):470-6. PubMed ID: 18371295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Inhibition of the transport of citrate during ADP-ribosylation of inner membrane proteins of the mitochondria].
    Velikiĭ NN; Sen'ko LN; Boĭko LM
    Biokhimiia; 1989 Aug; 54(8):1300-7. PubMed ID: 2819104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Submitochondrial distribution of cAMP during incubation with rat liver mitochondria].
    Kulinskiĭ VI; Zobova NV
    Biokhimiia; 1985 Sep; 50(9):1546-52. PubMed ID: 2996639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes.
    Johnston SP; Møller IM; Palmer JM
    FEBS Lett; 1979 Dec; 108(1):28-32. PubMed ID: 230083
    [No Abstract]   [Full Text] [Related]  

  • 39. Regulation of uncoupling protein activity in phosphorylating potato tuber mitochondria.
    Navet R; Douette P; Puttine-Marique F; Sluse-Goffart CM; Jarmuszkiewicz W; Sluse FE
    FEBS Lett; 2005 Aug; 579(20):4437-42. PubMed ID: 16061228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.