These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6661232)

  • 1. Identification of dichloromethyl carbene as a metabolite of carbon tetrachloride.
    Pohl LR; George JW
    Biochem Biophys Res Commun; 1983 Dec; 117(2):367-71. PubMed ID: 6661232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride.
    Manno M; De Matteis F; King LJ
    Biochem Pharmacol; 1988 May; 37(10):1981-90. PubMed ID: 3377806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by phenobarbital- and pyridine-induced rat liver microsomal cytochrome P450.
    Tolando R; Ferrara R; Eldirdiri NI; Albores A; King LJ; Manno M
    Xenobiotica; 1996 Apr; 26(4):425-35. PubMed ID: 9173683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride.
    Yamazoe Y; Sugiura M; Kamataki T; Kato R
    Jpn J Pharmacol; 1979 Oct; 29(5):715-21. PubMed ID: 43918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of carbon tetrachloride, bromotrichloromethane, and carbon tetrabromide by rat liver microsomes to electrophilic halogens.
    Mico BA; Branchflower RV; Pohl LR; Pudzianowski AT; Loew GH
    Life Sci; 1982 Jan; 30(2):131-7. PubMed ID: 7054640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract]   [Full Text] [Related]  

  • 7. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450.
    Sipes IG; Krishna G; Gillette JR
    Life Sci; 1977 May; 20(9):1541-8. PubMed ID: 17803
    [No Abstract]   [Full Text] [Related]  

  • 8. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products.
    Fernández G; Villarruel MC; de Toranzo EG; Castro JA
    Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):283-90. PubMed ID: 7071415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450].
    Reiner O; Athanassopoulos S; Hellmer KH; Murray RE; Uehleke H
    Arch Toxikol; 1972; 29(3):219-33. PubMed ID: 4404917
    [No Abstract]   [Full Text] [Related]  

  • 10. Pentane as an index of in vitro lipid peroxidation via microsomal NADPH-P-450 enzyme systems.
    Sato N; Fujii K; Yuge O; Morio M
    Hiroshima J Med Sci; 1989 Sep; 38(3):131-4. PubMed ID: 2584057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride.
    Persson JO; Terelius Y; Ingelman-Sundberg M
    Xenobiotica; 1990 Sep; 20(9):887-900. PubMed ID: 2122605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of reactive metabolites of CCl4 to specific microsomal proteins.
    Vittozzi L; Nastainczyk W
    Biochem Pharmacol; 1987 May; 36(9):1401-6. PubMed ID: 3579981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes.
    Uehleke H; Hellmer KH; Tabarelli S
    Xenobiotica; 1973 Jan; 3(1):1-11. PubMed ID: 4144825
    [No Abstract]   [Full Text] [Related]  

  • 14. NADPH-dependent and -independent loss of cytochrome P-450 in control and phenobarbital-induced rat hepatic microsomes incubated with carbon tetrachloride.
    Moody DE; Head B; Woo CH; James JL; Smuckler EA
    Exp Mol Pathol; 1986 Jun; 44(3):318-28. PubMed ID: 3720920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventive effect of isoflurane on destruction of cytochrome P450 during reductive dehalogenation of carbon tetrachloride in guinea-pig liver microsomes.
    Fujii K
    Drug Metabol Drug Interact; 1997; 14(2):99-107. PubMed ID: 9893740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride.
    de Groot H; Haas W
    Biochem Pharmacol; 1981 Aug; 30(16):2343-7. PubMed ID: 7295345
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon tetrachloride-induced loss of microsomal glucose 6-phosphatase and cytochrome P-450 in vitro.
    Masuda Y
    Jpn J Pharmacol; 1981 Feb; 31(1):107-16. PubMed ID: 6265675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of carbon tetrachloride and progesterone metabolism in liver microsomes from triacetyloleandomycin-treated rats.
    Larroque C; Lange R
    Arch Toxicol; 1987; 60(1-3):122-3. PubMed ID: 3497621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine.
    Mico BA; Pohl LR
    Arch Biochem Biophys; 1983 Sep; 225(2):596-609. PubMed ID: 6625601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids.
    Villarruel MC; Díaz Gómez MI; Castro JA
    Toxicol Appl Pharmacol; 1975 Jul; 33(1):106-14. PubMed ID: 240222
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.