These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6661530)

  • 1. A structural mathematical model for the viscoelastic anisotropic behaviour of trabecular bone.
    Kafka V; Jírová J
    Biorheology; 1983; 20(6):795-805. PubMed ID: 6661530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of material constants and hydraulic strengthening of trabecular bone through an orthotropic structural model.
    Deligianni DD; Missirlis YF; Kafka V
    Biorheology; 1994; 31(3):245-57. PubMed ID: 8729485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on constitutive equation that models bone tissue.
    Pawlikowski M; Klasztorny M; Skalski K
    Acta Bioeng Biomech; 2008; 10(4):39-47. PubMed ID: 19385511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact bone: numerical simulation of mechanical characteristics.
    Crolet JM; Aoubiza B; Meunier A
    J Biomech; 1993 Jun; 26(6):677-87. PubMed ID: 8390470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On hydraulic strengthening of bones.
    Kafka V
    Biorheology; 1983; 20(6):789-93. PubMed ID: 6661529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-layer elasto-visco-plastic rheological model for the material parameter identification of bone tissue.
    Reisinger AG; Frank M; Thurner PJ; Pahr DH
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2149-2162. PubMed ID: 32377934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of wet cortical bone--III. A non-linear constitutive equation.
    Lakes RS; Katz JL
    J Biomech; 1979; 12(9):689-98. PubMed ID: 489636
    [No Abstract]   [Full Text] [Related]  

  • 9. Stress relaxation behaviour of trabecular bone specimens.
    Deligianni DD; Maris A; Missirlis YF
    J Biomech; 1994 Dec; 27(12):1469-76. PubMed ID: 7806554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Models of Pattern and Form in Biological Tissues: The Role of Stress-Strain Constitutive Equations.
    Villa C; Chaplain MAJ; Gerisch A; Lorenzi T
    Bull Math Biol; 2021 May; 83(7):80. PubMed ID: 34037880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture.
    Kabel J; van Rietbergen B; Odgaard A; Huiskes R
    Bone; 1999 Oct; 25(4):481-6. PubMed ID: 10511116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New microscale constitutive model of human trabecular bone based on depth sensing indentation technique.
    Pawlikowski M; Jankowski K; Skalski K
    J Mech Behav Biomed Mater; 2018 Sep; 85():162-169. PubMed ID: 29902776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation.
    Hight TK; Brandeau JF
    J Biomech; 1983; 16(6):445-50. PubMed ID: 6619160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture.
    Van Rietbergen B; Odgaard A; Kabel J; Huiskes R
    J Biomech; 1996 Dec; 29(12):1653-7. PubMed ID: 8945668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales.
    Schwiedrzik JJ; Wolfram U; Zysset PK
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1155-68. PubMed ID: 23412886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.