These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6662239)

  • 21. A method to record changes in local neuronal discharge in response to infusion of small drug quantities in awake monkeys.
    Kliem MA; Wichmann T
    J Neurosci Methods; 2004 Sep; 138(1-2):45-9. PubMed ID: 15325110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Animal communication: do dolphins have names?
    Barton RA
    Curr Biol; 2006 Aug; 16(15):R598-9. PubMed ID: 16890519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microdialysis in freely moving animals with simultaneous recording of electrophysiological processes at the dialysate collection point.
    Korshunov VA
    Neurosci Behav Physiol; 2006 Jul; 36(6):583-7. PubMed ID: 16783510
    [No Abstract]   [Full Text] [Related]  

  • 25. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Microelectrode study of vestibular neurons in the isolated perfused brain of the frog Rana ridibunda].
    Pogosian VI; Fanardzhian VV; Manvelian LR
    Zh Evol Biokhim Fiziol; 1997; 33(4-5):575-7. PubMed ID: 9542052
    [No Abstract]   [Full Text] [Related]  

  • 27. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array.
    Jaber FT; Labeed FH; Hughes MP
    J Neurosci Methods; 2009 Sep; 182(2):225-35. PubMed ID: 19540265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale recording of neuronal ensembles.
    Buzsáki G
    Nat Neurosci; 2004 May; 7(5):446-51. PubMed ID: 15114356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A method for studying neuronal thermosensitivity in co-incubated slices of different sections of the brain].
    Vasilenko VIu; Beliavskiĭ EM
    Fiziol Zh SSSR Im I M Sechenova; 1989 Sep; 75(9):1279-82. PubMed ID: 2599140
    [No Abstract]   [Full Text] [Related]  

  • 30. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Massively parallel recording of unit and local field potentials with silicon-based electrodes.
    Csicsvari J; Henze DA; Jamieson B; Harris KD; Sirota A; Barthó P; Wise KD; Buzsáki G
    J Neurophysiol; 2003 Aug; 90(2):1314-23. PubMed ID: 12904510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An inexpensive microdrive for chronic single-unit recording.
    Goldberg E; Minerbo G; Smock T
    Brain Res Bull; 1993; 32(3):321-3. PubMed ID: 8374810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes.
    Jahnsen H; Kristensen BW; Thiébaud P; Noraberg J; Jakobsen B; Bove M; Martinoia S; Koudelka-Hep M; Grattarola M; Zimmer J
    Methods; 1999 Jun; 18(2):160-72. PubMed ID: 10356346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Method of isolating tungsten microelectrodes for registering neuronal activity in chronic experiments].
    Mikhaĭlov AV; Krylov AA
    Fiziol Zh SSSR Im I M Sechenova; 1983 Dec; 69(12):1633-6. PubMed ID: 6662236
    [No Abstract]   [Full Text] [Related]  

  • 36. [Microrecording: a guide to stereotactic brain operations].
    Hashimoto T
    No Shinkei Geka; 2004 Mar; 32(3):297-303. PubMed ID: 15148806
    [No Abstract]   [Full Text] [Related]  

  • 37. A method to explore the possibility of nonlocal correlations between brain electrical activities of two spatially separated animal subjects.
    Thaheld FH
    Biosystems; 2004 Mar; 73(3):205-16. PubMed ID: 15026195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microelectrode probes for biomedical applications.
    Schneider BH; Hill MR; Prohaska OJ
    Am Biotechnol Lab; 1990 Feb; 8(2):17-8, 20, 22-3. PubMed ID: 1366565
    [No Abstract]   [Full Text] [Related]  

  • 39. Electrophysiological interactions in neuronal populations at frequencies of 100 Hz to 1 KHz.
    Turbes CC; Schneider GT; Morgan RJ; Solie TN
    Biomed Sci Instrum; 1985; 21():77-84. PubMed ID: 3995149
    [No Abstract]   [Full Text] [Related]  

  • 40. [The method and implementation of measuring the peak of bioelectrical signals].
    Tang LM; Liu TB; Wu M; Ling G; Chang BK
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(2):108-11. PubMed ID: 16104173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.