These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 6662983)

  • 1. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Egger MD
    Brain Res; 1984 Jun; 302(1):135-50. PubMed ID: 6203612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1985 Feb; 232(2):229-40. PubMed ID: 3973092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structure and synaptic architecture of HRP-labelled primary afferent terminations in lamina IIi of the rat dorsal horn.
    Cruz F; Lima D; Zieglgänsberger W; Coimbra A
    J Comp Neurol; 1991 Mar; 305(1):3-16. PubMed ID: 2033122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis.
    Kalia M; Richter D
    J Comp Neurol; 1985 Nov; 241(4):521-35. PubMed ID: 4078045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):574-94. PubMed ID: 2464625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A light and electron microscopic study of the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus.
    Rutherford JG; Gwyn DG
    J Comp Neurol; 1980 Jan; 189(1):127-55. PubMed ID: 6766143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic connectivity of local circuit neurons in laminae III and IV of hamster spinal cord.
    Schneider SP; Sandiford DR; Kavookjian AM; Johnson BD
    J Comp Neurol; 1995 May; 355(3):380-91. PubMed ID: 7636020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synapses between slowly adapting lung stretch receptor afferents and inspiratory beta-neurons in the nucleus of the solitary tract of cats: a light and electron microscopic analysis.
    Anders K; Ohndorf W; Dermietzel R; Richter DW
    J Comp Neurol; 1993 Sep; 335(2):163-72. PubMed ID: 8227512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat.
    McLean JH; Hopkins DA
    J Comp Neurol; 1981 Jan; 195(1):157-75. PubMed ID: 7204650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central terminations of cutaneous mechanoreceptive afferents in the rat lumbar spinal cord.
    Woolf CJ
    J Comp Neurol; 1987 Jul; 261(1):105-19. PubMed ID: 3624538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers.
    RĂ©thelyi M; Light AR; Perl ER
    J Comp Neurol; 1982 Jun; 207(4):381-93. PubMed ID: 6288776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. II. Electron microscopic studies.
    Mihailoff GA; McArdle CB
    J Comp Neurol; 1981 Jan; 195(2):203-19. PubMed ID: 7251924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fine structure of the inferior colliculus in the cat. II. Synaptic organization.
    Paloff AM; Usunoff KG
    J Hirnforsch; 1992; 33(1):77-106. PubMed ID: 1447517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys.
    Cheema SS; Rustioni A; Whitsel BL
    J Comp Neurol; 1984 May; 225(2):276-90. PubMed ID: 6547152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study.
    Norita M
    J Comp Neurol; 1980 Mar; 190(1):29-48. PubMed ID: 7381053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of monosynaptic field potentials evoked by single action potentials in single primary afferent axons and their bouton distributions in the dorsal horn.
    Koerber HR; Brown PB; Mendell LM
    J Comp Neurol; 1990 Apr; 294(1):133-44. PubMed ID: 2324328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative ultrastructural analysis of the periaqueductal gray in the rabbit.
    Meller ST; Dennis BJ
    Anat Rec; 1993 Jul; 236(3):573-85. PubMed ID: 8363062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons.
    Falls WM; Park MR; Kitai ST
    J Comp Neurol; 1983 Dec; 221(2):229-45. PubMed ID: 6655084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.