These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 6663254)

  • 1. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental expression of D-galactoside-binding lectin in sea urchin (Anthocidaris crassispina) eggs.
    Ozeki Y; Yokota Y; Kato KH; Titani K; Matsui T
    Exp Cell Res; 1995 Feb; 216(2):318-24. PubMed ID: 7843276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of fatty acyl coenzyme A derivatives on citrate synthase and glutamate dehydrogenase.
    Lai JC; Liang BB; Jarvi EJ; Cooper AJ; Lu DR
    Res Commun Chem Pathol Pharmacol; 1993 Dec; 82(3):331-8. PubMed ID: 8122033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E.
    Oulhen N; Salaün P; Cosson B; Cormier P; Morales J
    J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content.
    Azarnia R; Chambers EL
    J Exp Zool; 1976 Oct; 198(1):65-77. PubMed ID: 978163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos.
    Salaün P; Boulben S; Mulner-Lorillon O; Bellé R; Sonenberg N; Morales J; Cormier P
    J Cell Sci; 2005 Apr; 118(Pt 7):1385-94. PubMed ID: 15769855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-mediated inactivation of the MAP kinase pathway in sea urchin eggs at fertilization.
    Kumano M; Carroll DJ; Denu JM; Foltz KR
    Dev Biol; 2001 Aug; 236(1):244-57. PubMed ID: 11456458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative changes in F-actin during the first cell cycle: evidence for two distinct pools of F-actin in the sea urchin egg.
    Heil-Chapdelaine RA; Otto JJ
    Cell Motil Cytoskeleton; 1996; 34(1):26-35. PubMed ID: 8860229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of long-chain acyl-coenzyme A's on the activity of the soluble form of nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase from lactating bovine mammary gland.
    Farrell HM; Wickham ED; Reeves HC
    Arch Biochem Biophys; 1995 Aug; 321(1):199-208. PubMed ID: 7639521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate.
    Swezey RR; Epel D
    Dev Biol; 1995 Jun; 169(2):733-44. PubMed ID: 7781912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis.
    Paul M; Johnson JD; Epel D
    J Exp Zool; 1976 Jul; 197(1):127-33. PubMed ID: 939957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INHIBITION OF DIHYDROFOLATE REDUCTASE BY PALMITOYL-CoA AND THE REVERSAL OF THE INHIBITION BY SPERMINE AND SPERMIDINE IN THE EGGS OF THE SEA URCHIN, HEMICENTROTUS PULCHERRIMUS.
    Kusunoki S; Yasumasu I
    Dev Growth Differ; 1980; 22(3):299-304. PubMed ID: 37281854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin E and its associated cdk activity do not cycle during early embryogenesis of the sea Urchin.
    Sumerel JL; Moore JC; Schnackenberg BJ; Nichols JA; Canman JC; Wessel GM; Marzluff WF
    Dev Biol; 2001 Jun; 234(2):425-40. PubMed ID: 11397011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Variation of phosphagens in sea urchin eggs before and after fertilization].
    Bartolucci S; Lancieri M; di Jeso F; de Vincentiis M
    C R Seances Soc Biol Fil; 1977; 171(3):512-6. PubMed ID: 143985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in the fructose 1,6-bisphosphatase activity in sea urchin eggs following fertilization.
    Fujimoto N; Yasumasu I
    J Biochem; 1979 Sep; 86(3):719-24. PubMed ID: 229101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine triphosphate levels in steelhead (Oncorhynchus mykiss) eggs: an examination of turnover, localization and role.
    Wendling NC; Bencic DC; Nagler JJ; Cloud JG; Ingermann RL
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Apr; 137(4):739-48. PubMed ID: 15123182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in dopamine uptake and developmental effects of dopamine receptor inactivation in the sea urchin.
    Carginale V; Borrelli L; Capasso A; Parisi E
    Mol Reprod Dev; 1995 Mar; 40(3):379-85. PubMed ID: 7772349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes of the endoplasmic reticulum of sea urchin eggs during fertilization.
    Jaffe LA; Terasaki M
    Dev Biol; 1993 Apr; 156(2):566-73. PubMed ID: 8462752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide efflux accompanies release of fertilization acid from sea urchin eggs.
    Gillies RJ; Rosenberg MP; Deamer DW
    J Cell Physiol; 1981 Aug; 108(2):115-22. PubMed ID: 6790553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.