These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6663261)

  • 1. Calorimetric techniques for metabolic studies of cells and organisms under normal conditions and stress.
    Hammerstedt RH; Lovrien RE
    J Exp Zool; 1983 Dec; 228(3):459-69. PubMed ID: 6663261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous metabolism by sperm in response to altered cellular ATP requirements.
    Inskeep PB; Hammerstedt RH
    J Cell Physiol; 1985 May; 123(2):180-90. PubMed ID: 3980585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcalorimetric investigations of animal cells.
    Wadsö I
    Tokai J Exp Clin Med; 1990 Sep; 15(5):373-5. PubMed ID: 2131643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A calorimetric method to assess endogenous metabolism and its application to the study of bovine sperm.
    Inskeep PB; Hammerstedt RH
    J Biochem Biophys Methods; 1983 May; 7(3):199-210. PubMed ID: 6875180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three important calorimetric applications of a classic thermodynamic equation.
    Blandamer MJ; Cullis PM; Gleeson PT
    Chem Soc Rev; 2003 Sep; 32(5):264-7. PubMed ID: 14518179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein metabolism in marine animals: the underlying mechanism of growth.
    Fraser KP; Rogers AD
    Adv Mar Biol; 2007; 52():267-362. PubMed ID: 17298892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of heat production by cultured cells in suspension using semi-automated flow microcalorimetry.
    Hoffner SE; Meredith RW; Kemp RB
    Cytobios; 1985; 42(166):71-80. PubMed ID: 3996046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell counting and carbon utilization velocities via microbial calorimetry.
    Boe I; Lovrien R
    Biotechnol Bioeng; 1990 Jan; 35(1):1-7. PubMed ID: 18588225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chip calorimetry for the monitoring of whole cell biotransformation.
    Maskow T; Lerchner J; Peitzsch M; Harms H; Wolf G
    J Biotechnol; 2006 Apr; 122(4):431-42. PubMed ID: 16309773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor.
    Schubert T; Breuer U; Harms H; Maskow T
    J Biotechnol; 2007 May; 130(1):24-31. PubMed ID: 17397956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters.
    Egawa T; Tsuneshige A; Suematsu M; Yonetani T
    Anal Chem; 2007 Apr; 79(7):2972-8. PubMed ID: 17311466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential role for isothermal calorimetry in studies of the effects of thermodynamic non-ideality in enzyme-catalyzed reactions.
    Lonhienne TG; Winzor DJ
    J Mol Recognit; 2004; 17(5):351-61. PubMed ID: 15362092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cellular energy metabolism: physiologic and pathologic aspects].
    Sztark F; Payen JF; Piriou V; Rigoulet M; Ventura-Clapier R; Mazat JP; Leverve X; Janvier G
    Ann Fr Anesth Reanim; 1999 Feb; 18(2):261-9. PubMed ID: 10207603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition.
    Jelesarov I; Bosshard HR
    J Mol Recognit; 1999; 12(1):3-18. PubMed ID: 10398392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of a continuous isothermal titration calorimetric method for equilibrium studies.
    Markova N; Hallén D
    Anal Biochem; 2004 Aug; 331(1):77-88. PubMed ID: 15245999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a large-scale biocalorimeter to monitor and control bioprocesses.
    Voisard D; Pugeaud P; Kumar AR; Jenny K; Jayaraman K; Marison IW; von Stockar U
    Biotechnol Bioeng; 2002 Oct; 80(2):125-38. PubMed ID: 12209768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the specific rate of catabolic activity (Ac) from the heat flow rate of soil microbial reactions measured by calorimetry: significance and applications.
    Barros N; Gallego M; Feijóo S
    Chem Biodivers; 2004 Oct; 1(10):1560-8. PubMed ID: 17191799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal performance and stress: responses and tolerance limits at different levels of biological organisation.
    Kassahn KS; Crozier RH; Pörtner HO; Caley MJ
    Biol Rev Camb Philos Soc; 2009 May; 84(2):277-92. PubMed ID: 19344429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture.
    Ma J; Qi WT; Yang LN; Yu WT; Xie YB; Wang W; Ma XJ; Xu F; Sun LX
    J Microbiol Methods; 2007 Jan; 68(1):172-7. PubMed ID: 16942811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart.
    Briede J; Stivrina M; Vigante B; Stoldere D; Duburs G
    Cell Biochem Funct; 2008; 26(2):238-45. PubMed ID: 17990288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.