These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
872 related articles for article (PubMed ID: 6663336)
41. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation. Jones SL; Gebhart GF Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046 [TBL] [Abstract][Full Text] [Related]
42. Time course and effective sites for inhibition from midbrain periaqueductal gray of spinal dorsal horn neuronal responses to cutaneous stimuli in the cat. Carstens E; Klumpp D; Zimmermann M Exp Brain Res; 1980; 38(4):425-30. PubMed ID: 7363975 [TBL] [Abstract][Full Text] [Related]
43. Ascending inhibition of nociceptive neurons in the nucleus ventralis posterolateralis following conditioning stimulation of the nucleus raphe magnus. Koyama N; Yokota T Brain Res; 1993 Apr; 609(1-2):298-306. PubMed ID: 8099523 [TBL] [Abstract][Full Text] [Related]
44. Responses of motor units during the hind limb flexion withdrawal reflex evoked by noxious skin heating: phasic and prolonged suppression by midbrain stimulation and comparison with simultaneously recorded dorsal horn units. Carstens E; Campell IG Pain; 1992 Feb; 48(2):215-226. PubMed ID: 1589240 [TBL] [Abstract][Full Text] [Related]
45. [Dorsal root potential evoked by stimulation of periaqueductal gray and its efferent pathway analysis in rats]. Zhang AL; Cheng ZF Sheng Li Xue Bao; 1990 Jun; 42(3):203-9. PubMed ID: 2082465 [TBL] [Abstract][Full Text] [Related]
46. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs. Chiang CY; Hu JW; Sessle BJ J Neurophysiol; 1994 Jun; 71(6):2430-45. PubMed ID: 7931526 [TBL] [Abstract][Full Text] [Related]
47. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, or spinal nociceptive transmission in the cat. Carstens E; Fraunhoffer M; Zimmermann M Pain; 1981 Apr; 10(2):149-167. PubMed ID: 6267541 [TBL] [Abstract][Full Text] [Related]
48. Vagal afferent modulation of spinal nociceptive transmission in the rat. Ren K; Randich A; Gebhart GF J Neurophysiol; 1989 Aug; 62(2):401-15. PubMed ID: 2549208 [TBL] [Abstract][Full Text] [Related]
49. Spinal neuronal inhibition and EEG synchrony by electrical stimulation in subcortical forebrain regions of the cat. Siegel J; Morton CR; Sandkühler J; Xiao HM; Zimmermann M Exp Brain Res; 1986; 62(2):363-72. PubMed ID: 3709719 [TBL] [Abstract][Full Text] [Related]
50. Characteristics of midbrain control of spinal nociceptive neurons and nonsomatosensory parameters in the pentobarbital-anesthetized rat. Sandkühler J; Willmann E; Fu QG J Neurophysiol; 1991 Jan; 65(1):33-48. PubMed ID: 1999730 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of feline spinal cord dorsal horn neurons following electrical stimulation of nucleus paragigantocellularis lateralis. A comparison with nucleus raphe magnus. Gray BG; Dostrovsky JO Brain Res; 1985 Dec; 348(2):261-73. PubMed ID: 4075085 [TBL] [Abstract][Full Text] [Related]
52. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. Reichling DB; Basbaum AI J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975 [TBL] [Abstract][Full Text] [Related]
53. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. Aimone LD; Gebhart GF J Neurosci; 1986 Jun; 6(6):1803-13. PubMed ID: 2872283 [TBL] [Abstract][Full Text] [Related]
54. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M; Behbehani MM Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727 [TBL] [Abstract][Full Text] [Related]
55. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Aimone LD; Jones SL; Gebhart GF Pain; 1987 Oct; 31(1):123-136. PubMed ID: 2892163 [TBL] [Abstract][Full Text] [Related]
56. Ventrolateral and dorsolateral ascending spinal cord pathway influence on thalamic nociception in cat. Martin RJ; Apkarian AV; Hodge CJ J Neurophysiol; 1990 Nov; 64(5):1400-12. PubMed ID: 2178182 [TBL] [Abstract][Full Text] [Related]
57. Effects of thalamic sensory relay nucleus stimulation on the jaw-opening reflex in response to tooth-pulp stimulation in the cat. Tsubokawa T; Katayama Y; Hirayama T; Yamamoto T; Nishimoto H Appl Neurophysiol; 1986; 49(4):229-36. PubMed ID: 3619440 [TBL] [Abstract][Full Text] [Related]
58. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. Hayashi H; Sumino R; Sessle BJ J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316 [TBL] [Abstract][Full Text] [Related]
59. 5-Hydroxytryptamine and antinociception. Roberts MH Neuropharmacology; 1984 Dec; 23(12B):1529-36. PubMed ID: 6098854 [TBL] [Abstract][Full Text] [Related]
60. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Mokha SS; McMillan JA; Iggo A Exp Brain Res; 1986; 61(3):597-606. PubMed ID: 3007190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]