BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6663500)

  • 1. Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():241-60. PubMed ID: 6663500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():205-40. PubMed ID: 6663499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways.
    Rose C; Weiss TF
    Hear Res; 1988 May; 33(2):151-65. PubMed ID: 3397325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural tuning in the granite spiny lizard.
    Turner RG
    Hear Res; 1987; 26(3):287-99. PubMed ID: 3583929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms.
    Eatock RA; Weiss TF; Otto KL
    J Neurophysiol; 1991 Jun; 65(6):1580-97. PubMed ID: 1875264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor potentials of lizard hair cells with free-standing stereocilia: responses to acoustic clicks.
    Baden-Kristensen K; Weiss TF
    J Physiol; 1983 Feb; 335():699-721. PubMed ID: 6875897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for signal transmission in an ear having hair cells with free-standing stereocilia. I. Empirical basis for model structure.
    Weiss TF; Peake WT; Rosowski JJ
    Hear Res; 1985; 20(2):131-8. PubMed ID: 4086380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory stereocilia in the alligator lizard.
    Mulroy MJ; Williams RS
    Hear Res; 1987; 25(1):11-21. PubMed ID: 3804856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea.
    Frishkopf LS; DeRosier DJ
    Hear Res; 1983 Dec; 12(3):393-404. PubMed ID: 6668260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):175-95. PubMed ID: 4086382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin.
    Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1995 Dec; 92(1-2):151-69. PubMed ID: 8647738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard.
    Weiss TF; Rose C
    Hear Res; 1988 May; 33(2):167-74. PubMed ID: 3397326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supporting-cell and extracellular responses to acoustic clicks in the free-standing region of the alligator lizard cochlea.
    Baden-Kristensen K; Weiss TF
    Hear Res; 1982 Dec; 8(3):295-315. PubMed ID: 7153184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central projections of cochlear nerve fibers in the alligator lizard.
    Szpir MR; Sento S; Ryugo DK
    J Comp Neurol; 1990 May; 295(4):530-47. PubMed ID: 2358519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endolymphatic and intracellular resting potential in the alligator lizard cochlea.
    Weiss TF; Altmann DW; Mulroy MJ
    Pflugers Arch; 1978 Jan; 373(1):77-84. PubMed ID: 565037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of auditory nerve fibers innervating regenerated hair cells after local application of gentamicin at the round window of the cochlea in the pigeon.
    Müller M; Smolders JW
    Hear Res; 1999 May; 131(1-2):153-69. PubMed ID: 10355612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.