These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 666686)

  • 1. Prevention of motion sickness in flight maneuvers, aided by transfer of adaptation effects acquired in the laboratory: ten consecutive referrals.
    Graybiel A; Knepton J
    Aviat Space Environ Med; 1978 Jul; 49(7):914-9. PubMed ID: 666686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers.
    Lackner JR; Graybiel A
    Aviat Space Environ Med; 1984 Jun; 55(6):513-20. PubMed ID: 6466247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vestibular adaptation to centrifugation does not transfer across planes of head rotation.
    Garrick-Bethell I; Jarchow T; Hecht H; Young LR
    J Vestib Res; 2008; 18(1):25-37. PubMed ID: 18776596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive adaptation to Coriolis accelerations associated with 1-rpm increments in the velocity of the slow rotation room.
    Reason JT; Graybiel A
    Aerosp Med; 1970 Jan; 41(1):73-9. PubMed ID: 5309794
    [No Abstract]   [Full Text] [Related]  

  • 5. Successful transfer of adaptation acquired in a slow rotation room to motion environments in Navy flight training.
    Cramer DB; Graybiel A; Oosterveld WJ
    Acta Otolaryngol; 1978; 85(1-2):74-84. PubMed ID: 305183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation.
    Young LR; Sienko KH; Lyne LE; Hecht H; Natapoff A
    J Vestib Res; 2003; 13(2-3):65-77. PubMed ID: 14757910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of the effect of anti-motion sickness pharmaceuticals on adaptation to the model conditions of long-term rotation].
    Orlov OI
    Aviakosm Ekolog Med; 2007; 41(6):24-8. PubMed ID: 18350832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness.
    Bos JE; Bles W; de Graaf B
    Aviat Space Environ Med; 2002 May; 73(5):436-44. PubMed ID: 12014602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.
    Muth ER; Lawson B
    Aviat Space Environ Med; 2003 May; 74(5):497-505. PubMed ID: 12751576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction-specific adaptation effects acquired in a slow rotation room.
    Graybiel A; Knepton J
    Aerosp Med; 1972 Nov; 43(11):1179-89. PubMed ID: 4635700
    [No Abstract]   [Full Text] [Related]  

  • 11. "Torso rotation" experiments; 2: Gaze stability during voluntary head movements improves with adaptation to motion sickness.
    Bouyer LJ; Watt DG
    J Vestib Res; 1996; 6(5):377-85. PubMed ID: 8887894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion sickness: acquisition and retention of adaptation effects compared in three motion environments.
    Graybiel A; Lackner JR
    Aviat Space Environ Med; 1983 Apr; 54(4):307-11. PubMed ID: 6847566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Human tolerance to rotation at different levels of increased gravitation].
    Genin AM; Kotovskaia AR; Galle RR; Gavrilova LN; Sarkisov IIu
    Kosm Biol Aviakosm Med; 1982; 16(1):70-4. PubMed ID: 6977679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Torso rotation" experiments; 1: Adaptation to motion sickness does not correlate with changes in VOR gain.
    Bouyer LJ; Watt DG
    J Vestib Res; 1996; 6(5):367-75. PubMed ID: 8887893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pre-exposures to a rotating optokinetic drum on adaptation to motion sickness.
    Hu SQ; Stern RM; Koch KL
    Aviat Space Environ Med; 1991 Jan; 62(1):53-6. PubMed ID: 1996932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desensitization to strong vestibular stimuli improves tolerance to simulated aircraft motion.
    Cheung B; Hofer K
    Aviat Space Environ Med; 2005 Dec; 76(12):1099-104. PubMed ID: 16370258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional overadaptation achieved by executing leftward or rightward head movements during unidirectional rotation.
    Graybiel A; Knepton J
    Aviat Space Environ Med; 1978 Jan; 49(1 Pt 1):1-4. PubMed ID: 623559
    [No Abstract]   [Full Text] [Related]  

  • 18. Rapid vestibular adaptation in a rotating environment by means of controlled head movements.
    Graybiel A; Wood CD
    Aerosp Med; 1969 Jun; 40(6):638-43. PubMed ID: 5305841
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of susceptibility to motion sickness during rotation at 30 rpm in the earth-horizontal, 10 degrees head-up, and 10 degrees head-down positions.
    Graybiel A; Lackner JR
    Aviat Space Environ Med; 1977 Jan; 48(1):7-11. PubMed ID: 831718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What you thought you knew about motion sickness isn't necessarily so.
    Cowings PS; Malmstrom FV
    Flying Saf; 1984 Feb; 40(2):12-7. PubMed ID: 11540877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.