These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6667324)

  • 1. Radiographic and histologic evaluation of intramedullary implants intended for biological fixation.
    Luedemann RE; Cook SD
    Biomater Med Devices Artif Organs; 1983; 11(2-3):197-210. PubMed ID: 6667324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: assessment in a canine model.
    Salkeld SL; Patron LP; Lien JC; Cook SD; Jones DG
    J Orthop Surg Res; 2016 Dec; 11(1):155. PubMed ID: 27906096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of intramedullary implants on bone strains and remodeling in the femur.
    Cook SD; Weinstein AM; Luedemann R; Lavernia C; Skinner HB; Klawitter JJ
    Biomater Med Devices Artif Organs; 1982; 10(1):21-40. PubMed ID: 7104429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone remodeling associated with a flexible femoral intramedullary implant.
    Luedemann RE; Thomas KA; Cook SD
    Biomater Med Devices Artif Organs; 1986; 14(3-4):181-94. PubMed ID: 3814713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study.
    Nimb L; Gotfredsen K; Steen Jensen J
    Acta Orthop Belg; 1993; 59(4):333-8. PubMed ID: 8116363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants.
    Cook SD; Walsh KA; Haddad RJ
    Clin Orthop Relat Res; 1985 Mar; (193):271-80. PubMed ID: 3971631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of skeletal attachment to LTI pyrolytic carbon, porous titanium, and carbon-coated porous titanium implants.
    Anderson RC; Cook SD; Weinstein AM; Haddad RJ
    Clin Orthop Relat Res; 1984; (182):242-57. PubMed ID: 6692619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of proximally and fully porous-coated canine hip stem design on bone modeling.
    Bobyn JD; Pilliar RM; Binnington AG; Szivek JA
    J Orthop Res; 1987; 5(3):393-408. PubMed ID: 3305844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of direct electrical current stimulation on the bone/porous metallic implant interface.
    Salman NN; Park JB
    Biomaterials; 1980 Oct; 1(4):209-13. PubMed ID: 7470576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo effects of PGE2 on cementless fixation of implant.
    Sun YQ; Lu SB; Wang JF
    Chin Med J (Engl); 1992 Sep; 105(9):742-8. PubMed ID: 1288977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model.
    Maniatopoulos C; Pilliar RM; Smith DC
    J Biomed Mater Res; 1986; 20(9):1309-33. PubMed ID: 3782184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and histological fixation of hydroxylapatite-coated pyrolytic carbon and titanium alloy implants: a report of short-term results.
    Hetherington VJ; Lord CE; Brown SA
    J Appl Biomater; 1995; 6(4):243-8. PubMed ID: 8589509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of surface treatments on the interface mechanics of LTI pyrolytic carbon implants.
    Thomas KA; Cook SD; Renz EA; Anderson RC; Haddad RJ; Haubold AD; Yapp R
    J Biomed Mater Res; 1985 Feb; 19(2):145-59. PubMed ID: 4077877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative histologic evaluation of LTI carbon, carbon-coated aluminum oxide and uncoated aluminum oxide dental implants.
    Cook SD; Weinstein AM; Klawitter JJ; Kent JN
    J Biomed Mater Res; 1983 May; 17(3):519-38. PubMed ID: 6863353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy.
    Hayashi K; Uenoyama K; Matsuguchi N; Sugioka Y
    J Biomed Mater Res; 1991 Apr; 25(4):515-23. PubMed ID: 2050714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic phenomena across endosteal bone-implant spaces with porous surfaced intramedullary implants.
    Bobyn JD; Pilliar RM; Cameron HU; Weatherly GC
    Acta Orthop Scand; 1981; 52(2):145-53. PubMed ID: 7246092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue response to porous-coated implants lacking initial bone apposition.
    Sandborn PM; Cook SD; Spires WP; Kester MA
    J Arthroplasty; 1988; 3(4):337-46. PubMed ID: 3241171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention characteristics of porous rooted Co-Cr-Mo alloy dental implants.
    Cook SD; Weinstein AM; Sander TA; Klawitter JJ
    Biomater Med Devices Artif Organs; 1982; 10(2):123-46. PubMed ID: 7139020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.