BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6667691)

  • 1. The 22 S cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization.
    Kleinschmidt JA; Hügle B; Grund C; Franke WW
    Eur J Cell Biol; 1983 Nov; 32(1):143-56. PubMed ID: 6667691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 22 S cylinder particles of Xenopus laevis. II. Immunological characterization and localization of their proteins in tissues and cultured cells.
    Hügle B; Kleinschmidt JA; Franke WW
    Eur J Cell Biol; 1983 Nov; 32(1):157-63. PubMed ID: 6667692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High mobility group proteins of amphibian oocytes: a large storage pool of a soluble high mobility group-1-like protein and involvement in transcriptional events.
    Kleinschmidt JA; Scheer U; Dabauvalle MC; Bustin M; Franke WW
    J Cell Biol; 1983 Sep; 97(3):838-48. PubMed ID: 6224801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble acidic complexes containing histones H3 and H4 in nuclei of Xenopus laevis oocytes.
    Kleinschmidt JA; Franke WW
    Cell; 1982 Jul; 29(3):799-809. PubMed ID: 6891289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyophobic proteins. A category of abundant soluble proteins which accumulate in the cytoplasm.
    Dabauvalle MC; Franke WW
    Exp Cell Res; 1984 Aug; 153(2):308-26. PubMed ID: 6539709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medusoid fibril bodies: a novel type of nuclear filament of diameter 8 to 12 nm with periodic ultrastructure demonstrated in oocytes of Xenopus laevis.
    Moreno Diaz de la Espina S; Franke WW; Krohne G; Trendelenburg MF; Grund C; Scheer U
    Eur J Cell Biol; 1982 Jun; 27(2):141-50. PubMed ID: 6180897
    [No Abstract]   [Full Text] [Related]  

  • 7. Oligomerization state of MIP proteins expressed in Xenopus oocytes as revealed by freeze-fracture electron-microscopy analysis.
    Bron P; Lagrée V; Froger A; Rolland JP; Hubert JF; Delamarche C; Deschamps S; Pellerin I; Thomas D; Haase W
    J Struct Biol; 1999 Dec; 128(3):287-96. PubMed ID: 10633068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosomes (proteasomes) of higher plants.
    Schliephacke M; Kremp A; Schmid HP; Köhler K; Kull U
    Eur J Cell Biol; 1991 Jun; 55(1):114-21. PubMed ID: 1915409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The germinal vesicle nucleus of Xenopus laevis oocytes as a selective storage receptacle for proteins.
    Merriam RW; Hill RJ
    J Cell Biol; 1976 Jun; 69(3):659-68. PubMed ID: 944701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes.
    Hofmann I; Schnölzer M; Kaufmann I; Franke WW
    Mol Biol Cell; 2002 May; 13(5):1665-76. PubMed ID: 12006661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteinase yscE of yeast shows homology with the 20 S cylinder particles of Xenopus laevis.
    Kleinschmidt JA; Escher C; Wolf DH
    FEBS Lett; 1988 Oct; 239(1):35-40. PubMed ID: 3053244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Karyoskeletal proteins and the organization of the amphibian oocyte nucleus.
    Benavente R; Krohne G; Schmidt-Zachmann MS; Hügle B; Franke WW
    J Cell Sci Suppl; 1984; 1():161-86. PubMed ID: 6397470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for structuring of water in growing oocytes: an X-ray microanalysis and nuclear magnetic resonance study.
    Labadie DR; Hazlewood CF; Forster J; Cameron IL
    Physiol Chem Phys Med NMR; 1983; 15(3):201-8. PubMed ID: 6675023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody against nuclear lamina proteins reveals cell type-specificity in Xenopus laevis.
    Krohne G; Debus E; Osborn M; Weber K; Franke WW
    Exp Cell Res; 1984 Jan; 150(1):47-59. PubMed ID: 6198191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous nuclear ribonucleoprotein complexes from Xenopus laevis oocytes and somatic cells.
    Marcu A; Bassit B; Perez R; Piñol-Roma S
    Int J Dev Biol; 2001 Sep; 45(5-6):743-52. PubMed ID: 11669376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protocol for isolating Xenopus oocyte nuclear envelope for visualization and characterization by scanning electron microscopy (SEM) or transmission electron microscopy (TEM).
    Allen TD; Rutherford SA; Murray S; Sanderson HS; Gardiner F; Kiseleva E; Goldberg MW; Drummond SP
    Nat Protoc; 2007; 2(5):1166-72. PubMed ID: 17546011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of DNA-protein complexes from the mitochondria of Xenopus laevis oocytes.
    Barat M; Rickwood D; Dufresne C; Mounolou JC
    Exp Cell Res; 1985 Mar; 157(1):207-17. PubMed ID: 3972011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of RNA-protein interactions in 7 S ribonucleoprotein particles from Xenopus laevis oocytes.
    Andersen J; Delihas N
    J Biol Chem; 1986 Feb; 261(6):2912-7. PubMed ID: 2419324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble tubulin complexes in oocytes of the common leopard frog, Rana pipiens, contain gamma-tubulin.
    Lessman CA; Kim H
    Mol Reprod Dev; 2001 Sep; 60(1):128-36. PubMed ID: 11550276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of ryanodine receptors in the nuclear envelope alters the conformation of the nuclear pore complex.
    Erickson ES; Mooren OL; Moore-Nichols D; Dunn RC
    Biophys Chem; 2004 Dec; 112(1):1-7. PubMed ID: 15501570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.