These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 6667776)
1. Rhodopsin bleaching and rod adaptation. Catt M; Ernst W; Kemp CM; O'Bryan PM Biochem Soc Trans; 1983 Dec; 11(6):676-8. PubMed ID: 6667776 [No Abstract] [Full Text] [Related]
2. Rhodopsin bleaching intermediates and enzyme activation in the rod outer segment. Knowles A Biochem Soc Trans; 1983 Dec; 11(6):672-4. PubMed ID: 6141965 [No Abstract] [Full Text] [Related]
3. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules. Aton BR Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023 [TBL] [Abstract][Full Text] [Related]
4. Light induced interaction between rhodopsin and GTP dependent processes in rod outer segments--I. Kinetic analyses of light scattering transients. Gupta BD; Deshpande S; Jones RE; Borys TJ; Abrahamson EW Photochem Photobiol; 1986 May; 43(5):529-33. PubMed ID: 3737703 [No Abstract] [Full Text] [Related]
5. [Release of calcium ions from native outer segments rods after partial rhodopsin bleaching]. Shevchenko TF; Kalamkarov GR; Kosolapov SS; Ostrovskiĭ MA Biofizika; 1981; 26(2):284-7. PubMed ID: 7260134 [No Abstract] [Full Text] [Related]
6. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination. Binder BM; Biernbaum MS; Bownds MD J Biol Chem; 1990 Sep; 265(25):15333-40. PubMed ID: 2394724 [TBL] [Abstract][Full Text] [Related]
7. [Rhodopsin photo-oxidation: oxygen consumption and spectrum of activity]. Starostin AV; Fedorovich IB; Ostrovskiĭ MA Biofizika; 1988; 33(3):452-5. PubMed ID: 3262376 [TBL] [Abstract][Full Text] [Related]
8. Detection and properties of rapid calcium release from binding sites in isolated rod outer segments upon photoexcitation of rhodopsin. Kaupp UB; Junge W Methods Enzymol; 1982; 81():569-76. PubMed ID: 7098896 [No Abstract] [Full Text] [Related]
9. The links between rhodopsin bleaching and visual adaptation. Catt M; Ernst W; Kemp CM Biochem Soc Trans; 1982 Oct; 10(5):343-5. PubMed ID: 7141090 [No Abstract] [Full Text] [Related]
10. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment. Gupta BD Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768 [TBL] [Abstract][Full Text] [Related]
11. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes. Emeis D; Hofmann KP FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258 [No Abstract] [Full Text] [Related]
12. Light-enhanced cross-linking of rhodopsin in rod outer segment membranes as detected by chemical probes. Shaw A; Crain R; Marinetti GV; O'Brien D; Tyminski PN Biochim Biophys Acta; 1980 Dec; 603(2):313-21. PubMed ID: 7459357 [TBL] [Abstract][Full Text] [Related]
13. Conformational and functional changes induced in vertebrate rhodopsin by photon capture. Chabre M Symp Soc Exp Biol; 1983; 36():87-108. PubMed ID: 6399792 [No Abstract] [Full Text] [Related]
15. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C; Kühn H; Chabre M Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431 [TBL] [Abstract][Full Text] [Related]
16. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes. Cooper A; Converse CA Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077 [TBL] [Abstract][Full Text] [Related]
17. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. Thomas DD; Stryer L J Mol Biol; 1982 Jan; 154(1):145-57. PubMed ID: 7077659 [No Abstract] [Full Text] [Related]
18. [Fluorescence of rhodopsin in the retinal rod outer segments of the frog at 77 K]. Sineshchekov VA; Balashov SP; Litvin FF Dokl Akad Nauk SSSR; 1983; 270(5):1231-5. PubMed ID: 6884192 [No Abstract] [Full Text] [Related]
19. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. Emeis D; Kühn H; Reichert J; Hofmann KP FEBS Lett; 1982 Jun; 143(1):29-34. PubMed ID: 6288450 [No Abstract] [Full Text] [Related]
20. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Wilden U; Hall SW; Kühn H Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]