These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6668553)

  • 1. An understanding of the role of enzyme localization of the liver on metabolite kinetics: a computer simulation.
    Pang KS; Stillwell RN
    J Pharmacokinet Biopharm; 1983 Oct; 11(5):451-68. PubMed ID: 6668553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a diffusional barrier to a metabolite across hepatocytes on its kinetics in "enzyme-distributed" models: a computer-aided simulation study.
    Miyauchi S; Sugiyama Y; Sato H; Sawada Y; Iga T; Hanano M
    J Pharmacokinet Biopharm; 1987 Aug; 15(4):399-421. PubMed ID: 3681667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of diffusional barriers on drug and metabolite kinetics.
    de Lannoy IA; Pang KS
    Drug Metab Dispos; 1987; 15(1):51-8. PubMed ID: 2881759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation study on the effect of a uniform diffusional barrier across hepatocytes on drug metabolism by evenly or unevenly distributed uni-enzyme in the liver.
    Sato H; Sugiyama Y; Miyauchi S; Sawada Y; Iga T; Hanano M
    J Pharm Sci; 1986 Jan; 75(1):3-8. PubMed ID: 3958902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic conjugation/deconjugation cycling pathways. Computer simulations examining the effect of Michaelis-Menten parameters, enzyme distribution patterns, and a diffusional barrier on metabolite disposition.
    Hansel SB; Morris ME
    J Pharmacokinet Biopharm; 1996 Apr; 24(2):219-43. PubMed ID: 8875348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative investigation of hepatic clearance models: predictions of metabolite formation and elimination.
    St-Pierre MV; Lee PI; Pang KS
    J Pharmacokinet Biopharm; 1992 Apr; 20(2):105-45. PubMed ID: 1629793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of metabolite kinetics.
    Pang KS
    J Pharmacokinet Biopharm; 1985 Dec; 13(6):633-62. PubMed ID: 3914545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of sequential metabolism. Contribution of parallel, primary metabolic pathways to the formation of a common, secondary metabolite.
    Pang KS
    Drug Metab Dispos; 1995 Feb; 23(2):166-77. PubMed ID: 7736907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new model-independent physiological approach to study hepatic drug clearance and its applications.
    Chiou WL
    Int J Clin Pharmacol Ther Toxicol; 1984 Nov; 22(11):577-90. PubMed ID: 6389376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans.
    Lavé T; Dupin S; Schmitt C; Valles B; Ubeaud G; Chou RC; Jaeck D; Coassolo P
    Pharm Res; 1997 Feb; 14(2):152-5. PubMed ID: 9090701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver.
    Xu X; Pang KS
    J Pharmacokinet Biopharm; 1989 Dec; 17(6):645-71. PubMed ID: 2635738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clearance and biologic half-life as indices of intrinsic hepatic metabolism.
    Perrier D; Gibaldi M
    J Pharmacol Exp Ther; 1974 Oct; 191(1):17-24. PubMed ID: 4423599
    [No Abstract]   [Full Text] [Related]  

  • 13. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay.
    Matsunaga N; Fukuchi Y; Imawaka H; Tamai I
    Drug Metab Dispos; 2018 May; 46(5):680-691. PubMed ID: 29352067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Modeling to Predict Midazolam Metabolite Exposure from In Vitro Data.
    Nguyen HQ; Kimoto E; Callegari E; Obach RS
    Drug Metab Dispos; 2016 May; 44(5):781-91. PubMed ID: 26956641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal disease and drug metabolism: an overview.
    Gibson TP
    Am J Kidney Dis; 1986 Jul; 8(1):7-17. PubMed ID: 3524205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered hepatic blood flow and drug disposition.
    Nies AS; Shand DG; Wilkinson GR
    Clin Pharmacokinet; 1976; 1(2):135-55. PubMed ID: 13954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated approach to model hepatic drug clearance.
    Liu L; Pang KS
    Eur J Pharm Sci; 2006 Nov; 29(3-4):215-30. PubMed ID: 16806855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commentary: a physiological approach to hepatic drug clearance.
    Wilkinson GR; Shand DG
    Clin Pharmacol Ther; 1975 Oct; 18(4):377-90. PubMed ID: 1164821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Profiling of Human Long-Term Liver Models and Hepatic Clearance Predictions from In Vitro Data Using Nonlinear Mixed-Effects Modeling.
    Kratochwil NA; Meille C; Fowler S; Klammers F; Ekiciler A; Molitor B; Simon S; Walter I; McGinnis C; Walther J; Leonard B; Triyatni M; Javanbakht H; Funk C; Schuler F; Lavé T; Parrott NJ
    AAPS J; 2017 Mar; 19(2):534-550. PubMed ID: 28050713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug and metabolite concentrations combined in predicting steady-state concentrations from test doses.
    Devane CL; Jusko WJ
    Biopharm Drug Dispos; 1983; 4(1):19-29. PubMed ID: 6839000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.