These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 6668752)

  • 1. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in the soluble alpha-crystallin proteins from human cataractous lenses.
    Alao JF
    Afr J Med Med Sci; 1978 Mar; 7(1):49-56. PubMed ID: 97955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Heterogeneity of human cataractous lens low molecular weight crystallins--study of concanavalin A binding proteins by two-dimensional electrophoresis].
    Kodama T; Kodama T
    Nippon Ganka Gakkai Zasshi; 1989 Feb; 93(2):234-8. PubMed ID: 2773705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on lens proteins. I. Subunit structure of beta crystallins of rabbit lens cortex.
    Mostafapour MK; Reddy VN
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):660-6. PubMed ID: 669895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative study of crystallins from the nucleus and cortex of the bovine ocular lens by the gel filtration and x-ray diffraction methods].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Biofizika; 1985; 30(1):107-11. PubMed ID: 3978131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial characterization of three distinct populations of human gamma-crystallins.
    Zigler JS; Russell P; Takemoto LJ; Schwab SJ; Hansen JS; Horwitz J; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):525-31. PubMed ID: 3980168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M; Takemoto LJ; Iwata S
    Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The separation of human cataractous lens low molecular weight proteins by chromatofocusing (author's transl)].
    Kabasawa I; Sakaue E; Bessho T; Watanabe M; Kimura M
    Nippon Ganka Gakkai Zasshi; 1982; 86(4):414-7. PubMed ID: 7113829
    [No Abstract]   [Full Text] [Related]  

  • 12. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T; Kodama T; Horwitz J; Takemoto L
    Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of human cataractous and normal lens gamma-crystallins.
    Kabasawa I; Kodama T; Kabasawa M; Sakaue E; Watanabe M; Kimura M
    Exp Eye Res; 1982 Jul; 35(1):1-9. PubMed ID: 7095006
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of lens proteins. II. gamma-Crystallin of normal and cataractous rat lenses.
    Wagner BJ; Fu SC
    Exp Eye Res; 1978 Mar; 26(3):255-65. PubMed ID: 639878
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of amino acid composition of human gamma H crystallin subfractions in normal and cataractous lenses.
    Kabasawa I; Watanabe M; Kimura M
    Ind Health; 1982; 20(3):277-80. PubMed ID: 7174382
    [No Abstract]   [Full Text] [Related]  

  • 19. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.