These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 6670020)

  • 1. Deformation of the vertebral end-plate under axial loading of the spine.
    Brinckmann P; Frobin W; Hierholzer E; Horst M
    Spine (Phila Pa 1976); 1983; 8(8):851-6. PubMed ID: 6670020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height.
    Szkoda-Poliszuk K; Żak M; Pezowicz C
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3107. PubMed ID: 29799170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading.
    Frei H; Oxland TR; Rathonyi GC; Nolte LP
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative, 3D Visualization of the Initiation and Progression of Vertebral Fractures Under Compression and Anterior Flexion.
    Jackman TM; Hussein AI; Curtiss C; Fein PM; Camp A; De Barros L; Morgan EF
    J Bone Miner Res; 2016 Apr; 31(4):777-88. PubMed ID: 26590372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can variations in intervertebral disc height affect the mechanical function of the disc?
    Lu YM; Hutton WC; Gharpuray VM
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2208-16; discussion 2217. PubMed ID: 8902964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial bulging of the annulus fibrosus during compression of the intervertebral disc.
    Klein JA; Hickey DS; Hukins DW
    J Biomech; 1983; 16(3):211-7. PubMed ID: 6863336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulging of lumbar intervertebral discs: non-contacting measurements of anatomical specimens.
    Stokes IA
    J Spinal Disord; 1988; 1(3):189-93. PubMed ID: 2980136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model.
    Cunningham BW; Lowery GL; Serhan HA; Dmitriev AE; Orbegoso CM; McAfee PC; Fraser RD; Ross RE; Kulkarni SS
    Eur Spine J; 2002 Oct; 11 Suppl 2(Suppl 2):S115-23. PubMed ID: 12384732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro torsion-induced stress distribution changes in porcine intervertebral discs.
    van Deursen DL; Snijders CJ; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2001 Dec; 26(23):2582-6. PubMed ID: 11725239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue response of lumbar intervertebral joints under axial cyclic loading.
    Liu YK; Njus G; Buckwalter J; Wakano K
    Spine (Phila Pa 1976); 1983; 8(8):857-65. PubMed ID: 6230741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc.
    Elliott DM; Sarver JJ
    Spine (Phila Pa 1976); 2004 Apr; 29(7):713-22. PubMed ID: 15087791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An improved vertebral body replacement for the thoracolumbar spine. A biomechanical in vitro test on human lumbar vertebral bodies].
    Reinhold M; Schmölz W; Canto F; Krappinger D; Blauth M; Knop C
    Unfallchirurg; 2007 Apr; 110(4):327-33. PubMed ID: 17211598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc.
    Hee HT; Chuah YJ; Tan BH; Setiobudi T; Wong HK
    Spine (Phila Pa 1976); 2011 Apr; 36(7):505-11. PubMed ID: 20975621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of cadaver lumbar spine motion segment stiffness.
    Brown MD; Holmes DC; Heiner AD
    Spine (Phila Pa 1976); 2002 May; 27(9):918-22. PubMed ID: 11979161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading.
    Zehra U; Robson-Brown K; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Aug; 40(15):1173-80. PubMed ID: 25893360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.