These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 667033)

  • 1. Erythrocyte lipid composition and sodium transport in human liver disease.
    Owen JS; McIntyre N
    Biochim Biophys Acta; 1978 Jun; 510(1):168-76. PubMed ID: 667033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relation between membrane cholesterol and phospholipid and sodium efflux in erythrocytes from healthy subjects and patients with chronic cholestasis.
    Jackson PA; Morgan DB
    Clin Sci (Lond); 1982 Jan; 62(1):101-7. PubMed ID: 7056026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium flux and lipid spectrum in the erythrocyte membrane in essential hypertension.
    Preiss R; Prümke HJ; Sohr R; Müller E; Schmeck G; Schmidt J; Banaschak H
    Int J Clin Pharmacol Ther Toxicol; 1982 Mar; 20(3):105-12. PubMed ID: 7068282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium transport and lipid composition in mammalian red blood cell membranes.
    Kirk RG
    Biochim Biophys Acta; 1977 Jan; 464(1):157-64. PubMed ID: 831788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome.
    Korff JM; Siebens AW; Gill JR
    J Clin Invest; 1984 Nov; 74(5):1724-9. PubMed ID: 6501567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease.
    Owen JS; Bruckdorfer KR; Day RC; McIntyre N
    J Lipid Res; 1982 Jan; 23(1):124-32. PubMed ID: 7057101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Na/K transport in red blood cells from normal subjects: methodological problems (author's transl)].
    Borghi L; Canali M; Curti A; Montanari A; Perinotto P; Novarini A
    Ateneo Parmense Acta Biomed; 1980; 51(1):23-31. PubMed ID: 7470177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    Am J Hypertens; 1993 Sep; 6(9):763-70. PubMed ID: 8110430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacement of molecular species of phosphatidylcholine: influence on erythrocyte Na transport.
    Engelmann B; Op den Kamp JA; Roelofsen B
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C682-91. PubMed ID: 2333953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lecithin:cholesterol acyltransferase deficiency and cell membrane lipids and function in human liver disease.
    Owen JS; Hutton RA; Hope MJ; Harry DS; Bruckdorfer KR; Day RC; McIntyre N; Lucy JA
    Scand J Clin Lab Invest Suppl; 1978; 150():228-32. PubMed ID: 746354
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of cholesterol on the valinomycin-mediated uptake of rubidium into erythrocytes and phospholipid vesicles.
    Labelle EF
    Biochim Biophys Acta; 1979 Aug; 555(2):259-69. PubMed ID: 476106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypokalaemia on the ouabain-sensitive sodium transport and the ouabain-binding capacity in human erythrocytes.
    Rubython EJ; Morgan DB
    Clin Sci (Lond); 1983 Feb; 64(2):177-82. PubMed ID: 6822054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family.
    Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of race, sex, and blood pressure on erythrocyte sodium transport in humans.
    Smith JB; Wade MB; Fineberg NS; Weinberger MH
    Hypertension; 1988 Sep; 12(3):251-8. PubMed ID: 3169940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Increased ouabain-insensitive sodium efflux in leaky red cell membranes of the patients with hereditary spherocytosis].
    Yoshimoto M; Yawata Y
    Nihon Ketsueki Gakkai Zasshi; 1982 May; 45(3):549-54. PubMed ID: 6127856
    [No Abstract]   [Full Text] [Related]  

  • 17. Relations between sodium transport and sodium concentration in human erythrocytes in health and disease.
    Cumberbatch M; Morgan DB
    Clin Sci (Lond); 1981 May; 60(5):555-64. PubMed ID: 7249541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the number and activity of sodium pumps in erythrocytes from patients with hyperthyroidism.
    Rubython EJ; Cumberbatch M; Morgan DB
    Clin Sci (Lond); 1983 Apr; 64(4):441-7. PubMed ID: 6825412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes.
    Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC
    Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.