BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6670436)

  • 1. Changes in the ultrastructure of neural tube cells and the notochordal sheath of ultraviolet irradiated Xenopus laevis embryos.
    Jurand A; Malacinski GM
    Acta Embryol Morphol Exp (Halocynthia Assoc); 1983 May; 4(1):3-16. PubMed ID: 6670436
    [No Abstract]   [Full Text] [Related]  

  • 2. Axial structure development in ultraviolet-irradiated (notochord-defective) amphibian embryos.
    Youn BW; Malacinski GM
    Dev Biol; 1981 Apr; 83(2):339-52. PubMed ID: 7239015
    [No Abstract]   [Full Text] [Related]  

  • 3. Tissue interactions during axial structure pattern formation in amphibia.
    Malacinski GM; Youn BW; Jurand A
    Scan Electron Microsc; 1981; (Pt 2):307-18. PubMed ID: 7034171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of minute doses of ethylenebisdithiocarbamate disodium salt (nabam) and its degradative products on connective tissue envelopes of the notochord in Xenopus: an ultrastructural study.
    Birch WX; Prahlad KV
    Cytobios; 1986; 48(194-195):175-84. PubMed ID: 3802916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis.
    Godsave SF; Anderton BH; Wylie CC
    J Embryol Exp Morphol; 1986 Sep; 97():201-23. PubMed ID: 2432146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface ultrastructure of the isolated avian notochord in vitro: the effect of the perinotochordal sheath.
    Carlson EC; Kenney MC
    Anat Rec; 1980 Jun; 197(2):257-76. PubMed ID: 7416518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians.
    Youn BW; Keller RE; Malacinski GM
    J Embryol Exp Morphol; 1980 Oct; 59():223-47. PubMed ID: 6971322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning electron microscope studies of central nervous system development.
    Waterman RE
    Birth Defects Orig Artic Ser; 1979; 15(3):55-77. PubMed ID: 380681
    [No Abstract]   [Full Text] [Related]  

  • 9. Further evidence that formation of the neural tube requires elongation of the nervous system.
    Jacobson AG
    J Exp Zool; 1984 Apr; 230(1):23-8. PubMed ID: 6726147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfibril formation in chick notochordal cells.
    Kayahara T
    Tissue Cell; 1982; 14(1):171-81. PubMed ID: 7089963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos.
    López SL; Dono R; Zeller R; Carrasco AE
    Dev Dyn; 1995 Dec; 204(4):457-71. PubMed ID: 8601038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary neurulation in teleosts--evidence for epithelial genesis of central nervous tissue as in other vertebrates.
    Reichenbach A; Schaaf P; Schneider H
    J Hirnforsch; 1990; 31(2):153-8. PubMed ID: 2358660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation.
    Youn BW; Malacinski GM
    J Embryol Exp Morphol; 1981 Aug; 64():23-43. PubMed ID: 7310302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The ultrastructure of the neural tube and the neuroectodermal matrix cells of the central nervous system of chick embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 70(2):240-68. PubMed ID: 5987164
    [No Abstract]   [Full Text] [Related]  

  • 17. Neural plate morphogenesis and axial stretching in "notochord-defective" Xenopus laevis embryos.
    Malacinski GM; Youn BW
    Dev Biol; 1981 Dec; 88(2):352-7. PubMed ID: 7308580
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of UV on cleavage of Xenopus laevis.
    Beal CM; Dixon KE
    J Exp Zool; 1975 May; 192(2):277-83. PubMed ID: 1133572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis.
    Davies CS; Messenger NJ; Craig R; Warner AE
    Dev Biol; 1996 Mar; 174(2):431-47. PubMed ID: 8631513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N; Wakahara M
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.